16 research outputs found

    An introduction to factor analysis for radio frequency interference detection on satellite observations

    Get PDF
    A novel radio frequency interference (RFI) detection method is introduced for satellite-borne passive microwave radiometer observations. This method is based on factor analysis, in which variability among observed and correlated variables is described in terms of factors. In the present study, this method is applied to the Tropical Rainfall Measuring Mission (TRMM)/TRMM Microwave Imager (TMI) and Aqua/Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) satellite measurements over the land surface to detect the RFI signals, respectively, in 10 and 6 GHz channels. The RFI detection results are compared with other traditional methods, such as spectral difference method and principal component analysis (PCA) method. It has been found that the newly proposed method is able to detect RFI signals in the C- and X-band radiometer channels as effectively as the conventional PCA method

    IMPROVED SATELLITE MICROWAVE RETRIEVALS AND THEIR INCORPORATION INTO A SIMPLIFIED 4D-VAR VORTEX INITIALIZATION USING ADJOINT TECHNIQUES

    Get PDF
    Microwave instruments provide unique radiance measurements for observing surface properties and vertical atmosphere profiles in almost all weather conditions except for heavy precipitation. The Advanced Microwave Scanning Radiometer 2 (AMSR2) observes radiation emitted by Earth at window channels, which helps to retrieve surface and column integrated geophysical variables. However, observations at some X- and K-band channels are susceptible to interference by television signals transmitted from geostationary satellites when AMSR2 is scanning regions including the U.S. and Europe, which is referred to as Television Frequency Interference (TFI). It is found that high reflectivity over the ocean surface is favorable for the television signals to be reflected back to space. When the angle between the Earth scene vector and the reflected signal vector is small enough, the reflected TV signals will enter AMSR2’s antenna. As a consequence, TFI will introduce erroneous information to retrieved geophysical products if not detected. This study proposes a TFI correction algorithm for observations over ocean. Microwave imagers are mostly for observing surface or column-integrated properties. In order to have vertical temperature profiles of the atmosphere, a study focusing on the Advanced Technology Microwave Sounder (ATMS) is included. A traditional AMSU-A temperature retrieval algorithm is modified to remove the scan biases in the temperature retrieval and to include only those ATMS sounding channels that are correlated with the atmospheric temperatures on the pressure level of the retrieval. The warm core structures derived for Hurricane Sandy when it moved from the tropics to the mid-latitudes are examined. Significant improvements have been obtained for the forecasts of hurricane track, but not intensity, especially during the first 6-12 hours. In this study, a simplified four-dimensional variational (4D-Var) vortex initialization model is developed to assimilate the geophysical products retrieved from the observations of both microwave imagers and microwave temperature sounders. The goal is to generate more realistic initial vortices than the bogus vortices currently incorporated in the Hurricane Weather Research and Forecasting (HWRF) model in order to improve hurricane intensity forecasts. The case included in this study is Hurricane Gaston (2016). The numerical results show that the satellite geophysical products have a desirable impact on the structure of the initialized vortex

    Radio frequency interference in microwave radiometry: statistical analysis and study of techniques for detection and mitigation

    Get PDF
    Microwave radiometry field has been increasing its performance with higher accuracy measurements, leading to a more presence in the remote sensing field. Several space-borne, air-borne and ground-based radiometers have been developed to perform measurement campaigns; however, the actual sensitivity of a radiometer is often limited by man-made radio emissions such as radars, broadcasting emissions, wireless communications and many other communication systems based on electromagnetic waves, limiting the improvement in the radiometers¿ performance. Consequently, in order to maintain the accuracy in the radiometric measurements, it has been researched in the Radio Frequency Interference (RFI) detection and mitigation systems and algorithms for the microwave radiometry field. The scope of this doctoral thesis is the development and testing of RFI detection and mitigation algorithms in order to enhance radiometric measurements performed by the Multifequency Experimental Radiometer with Interference Tracking for Experiments over Land and Littoral (MERITXELL). The MERITXELL has been developed during this thesis with the idea studying the RFI present in several radiometric bands and the way to mitigate it, as well as to obtain data from diverse frequency bands and devices in only one measurement campaign

    Development of Radio Frequency Interference Detection Algorithm for Passive Microwave Remote Sensing

    Full text link
    Radio Frequency Interference (RFI) signals are man-made sources that are increasingly plaguing passive microwave remote sensing measurements. RFI is of insidious nature, with some signals low power enough to go undetected but large enough to impact science measurements and their results. With the launch of the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite in November 2009 and the upcoming launches of the new NASA sea-surface salinity measuring Aquarius mission in June 2011 and soil-moisture measuring Soil Moisture Active Passive (SMAP) mission around 2015, active steps are being taken to detect and mitigate RFI at L-band. An RFI detection algorithm was designed for the Aquarius mission. The algorithm performance was analyzed using kurtosis based RFI ground-truth. The algorithm has been developed with several adjustable location dependant parameters to control the detection statistics (false-alarm rate and probability of detection). The kurtosis statistical detection algorithm has been compared with the Aquarius pulse detection method. The comparative study determines the feasibility of the kurtosis detector for the SMAP radiometer, as a primary RFI detection algorithm in terms of detectability and data bandwidth. The kurtosis algorithm has superior detection capabilities for low duty-cycle radar like pulses, which are more prevalent according to analysis of field campaign data. Most RFI algorithms developed have generally been optimized for performance with individual pulsed-sinusoidal RFI sources. A new RFI detection model is developed that takes into account multiple RFI sources within an antenna footprint. The performance of the kurtosis detection algorithm under such central-limit conditions is evaluated. The SMOS mission has a unique hardware system, and conventional RFI detection techniques cannot be applied. Instead, an RFI detection algorithm for SMOS is developed and applied in the angular domain. This algorithm compares brightness temperature values at various incidence angles for a particular grid location. This algorithm is compared and contrasted with other algorithms present in the visibility domain of SMOS, as well as the spatial domain. Initial results indicate that the SMOS RFI detection algorithm in the angular domain has a higher sensitivity and lower false-alarm rate than algorithms developed in the other two domains.Ph.D.Atmospheric and Space SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/86308/1/samisra_1.pd

    Proceedings of the NASA Symposium on Global Wind Measurements

    Get PDF
    This Proceedings contains a collection of the papers which were presented at the Symposium and Workshop on Global Wind Measurements. The objectives and agenda for the Symposium and Workshop were decided during a planning meeting held in Washington, DC, on 5 February 1985. Invited papers were presented at the Symposium by meteorologists and leading experts in wind sensing technology from the United States and Europe on: (1) the meteorological uses and requirements for wind measurements; (2) the latest developments in wind sensing technology; and (3) the status of our understanding of the atmospheric aerosol distribution. A special session was also held on the latest development in wind sensing technology by the United States Air Force

    Abstracts of papers presented at the Eleventh International Laser Radar Conference

    Get PDF
    Abstracts of 39 papers discuss measurements of properties from the Earth's ocean surface to the mesosphere, made with techniques ranging from elastic and inelastic scattering to Doppler shifts and differential absorption. Topics covered include: (1) middle atmospheric measurements; (2) meteorological parameters: temperature, density, humidity; (3) trace gases by Raman and DIAL techniques; (4) techniques and technology; (5) plume dispersion; (6) boundary layer dynamics; (7) wind measurements; visibility and aerosol properties; and (9) multiple scattering, clouds, and hydrometers

    Advances in Remote Sensing-based Disaster Monitoring and Assessment

    Get PDF
    Remote sensing data and techniques have been widely used for disaster monitoring and assessment. In particular, recent advances in sensor technologies and artificial intelligence-based modeling are very promising for disaster monitoring and readying responses aimed at reducing the damage caused by disasters. This book contains eleven scientific papers that have studied novel approaches applied to a range of natural disasters such as forest fire, urban land subsidence, flood, and tropical cyclones

    Ocean remote sensing techniques and applications: a review (Part II)

    Get PDF
    As discussed in the first part of this review paper, Remote Sensing (RS) systems are great tools to study various oceanographic parameters. Part I of this study described different passive and active RS systems and six applications of RS in ocean studies, including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH), Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD). In Part II, the remaining nine important applications of RS systems for ocean environments, including Iceberg, Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery are comprehensively reviewed and discussed. For each application, the applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML) techniques, and several case studies are discussed.Peer ReviewedPostprint (published version

    Earth Observations for Addressing Global Challenges

    Get PDF
    "Earth Observations for Addressing Global Challenges" presents the results of cutting-edge research related to innovative techniques and approaches based on satellite remote sensing data, the acquisition of earth observations, and their applications in the contemporary practice of sustainable development. Addressing the urgent tasks of adaptation to climate change is one of the biggest global challenges for humanity. As His Excellency António Guterres, Secretary-General of the United Nations, said, "Climate change is the defining issue of our time—and we are at a defining moment. We face a direct existential threat." For many years, scientists from around the world have been conducting research on earth observations collecting vital data about the state of the earth environment. Evidence of the rapidly changing climate is alarming: according to the World Meteorological Organization, the past two decades included 18 of the warmest years since 1850, when records began. Thus, Group on Earth Observations (GEO) has launched initiatives across multiple societal benefit areas (agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather), such as the Global Forest Observations Initiative, the GEO Carbon and GHG Initiative, the GEO Biodiversity Observation Network, and the GEO Blue Planet, among others. The results of research that addressed strategic priorities of these important initiatives are presented in the monograph
    corecore