2,765 research outputs found

    The physics of angular momentum radio

    Full text link
    Wireless communications, radio astronomy and other radio science applications are predominantly implemented with techniques built on top of the electromagnetic linear momentum (Poynting vector) physical layer. As a supplement and/or alternative to this conventional approach, techniques rooted in the electromagnetic angular momentum physical layer have been advocated, and promising results from proof-of-concept radio communication experiments using angular momentum were recently published. This sparingly exploited physical observable describes the rotational (spinning and orbiting) physical properties of the electromagnetic fields and the rotational dynamics of the pertinent charge and current densities. In order to facilitate the exploitation of angular momentum techniques in real-world implementations, we present a systematic, comprehensive theoretical review of the fundamental physical properties of electromagnetic angular momentum observable. Starting from an overview that puts it into its physical context among the other Poincar\'e invariants of the electromagnetic field, we describe the multi-mode quantized character and other physical properties that sets electromagnetic angular momentum apart from the electromagnetic linear momentum. These properties allow, among other things, a more flexible and efficient utilization of the radio frequency spectrum. Implementation aspects are discussed and illustrated by examples based on analytic and numerical solutions.Comment: Fixed LaTeX rendering errors due to inconsistencies between arXiv's LaTeX machine and texlive in OpenSuSE 13.

    Navigation/traffic control satellite mission study. Volume 3 - System concepts

    Get PDF
    Satellite network for air traffic control, solar flare warning, and collision avoidanc

    Project LOCOST: Laser or Chemical Hybrid Orbital Space Transport

    Get PDF
    A potential mission in the late 1990s is the servicing of spacecraft assets located in GEO. The Geosynchronous Operations Support Center (GeoShack) will be supported by a space transfer vehicle based at the Space Station (SS). The vehicle will transport cargo between the SS and the GeoShack. A proposed unmanned, laser or chemical hybrid orbital space transfer vehicle (LOCOST) can be used to efficiently transfer cargo between the two orbits. A preliminary design shows that an unmanned, laser/chemical hybrid vehicle results in the fuel savings needed while still providing fast trip times. The LOCOST vehicle receives a 12 MW laser beam from one Earth orbiting, solar pumped, iodide Laser Power Station (LPS). Two Energy Relay Units (ERU) provide laser beam support during periods of line-of-sight blockage by the Earth. The baseline mission specifies a 13 day round trip transfer time. The ship's configuration consist of an optical train, one hydrogen laser engine, two chemical engines, a 18 m by 29 m box truss, a mission-flexible payload module, and propellant tanks. Overall vehicle dry mass is 8,000 kg. Outbound cargo mass is 20,000 kg, and inbound cargo mass is 6,000 kg. The baseline mission needs 93,000 kg of propellants to complete the scenario. Fully fueled, outbound mission mass is 121,000 kg. A regeneratively cooled, single plasma, laser engine design producing a maximum of 768 N of thrust is utilized along with two traditional chemical engines. The payload module is designed to hold 40,000 kg of cargo, though the baseline mission specifies less. A proposed design of a laser/chemical hybrid vehicle provides a trip time and propellant efficient means to transport cargo from the SS to a GeoShack. Its unique, hybrid propulsion system provides safety through redundancy, allows baseline missions to be efficiently executed, while still allowing for the possibility of larger cargo transfers

    A Study on Asymmetric Perfect Vortex: Fractional Orbital Angular Momentum and Nonlinear Interaction

    Get PDF
    In this work, the manipulation including generation and detection of the asymmetric perfect vortex (APV) carrying fractional orbital angular momentum (OAM) was demonstrated and discussed. All the manipulation of the modes is in real-time which provides a perfect tool for sensing the dynamic properties of complex media. The OAM-involved nonlinear conversion, specifically the second-harmonic generation (SHG) using the APV and asymmetric Bessel-Gaussian (BG) beams was studied in detail. The generation and detection of the APV are based on the HOBBIT concept which includes acoustic optical deflector (AOD) and log-polar coordinate transformation optics. The RF signal driving the AOD allows the real-time controlling of the OAM modes. Because of the asymmetric property of the modes, the APV beams can carry fractional OAM with a linear one-to-one correspondence of the fractional charges. The feature of the Doppler frequency shift caused by the AOD was introduced and demonstrated which was used to build a Poincaré sphere to encode and decode information. The spatial APV basis was also demonstrated by developing a pulsed 2D HOBBIT system which includes two AODs controlling both the OAM and radial dimensions. Examples using all these HOBBIT systems to sense complex media were given to show the real-time OAM spectrum measurement. The SHG process of the APV and the asymmetric BG beams was discussed. The theoretical and experimental results show how beams with OAM-independent and OAM-dependent sizes behave in the nonlinear process. Both the two beam models gave a very good one-to-one correspondence of fractional charges which shows the potential to use the beam models for information encoding and decoding. Different parameters impacting the OAM-related nonlinear conversion were discussed. These parameters include power density, phase-matching condition, and mode overlapping. Multiple OAM modes nonlinear interaction was also studied. The reverse HOBBIT system was used to verify the multi-mode interaction theory of the APV modes. Using the nonlinear interaction theory of the APV, the 2D HOBBIT was used as the source to excite the SHG process and generate deep UV APV carrying OAM. The effects of how OAM and radial beam size affect the nonlinear interaction were illustrated

    Spacecraft Systems & Navigation

    Get PDF
    This textbook is steered towards higher educational course entailed in Commercial Space Operations. This textbook will be covering in detail Orbital Satellites, and Spacecraft. These topics are discussed according to their application, design, and environment. The power system, shielding and communication systems are reviewed along with their missions, space, environment and limitations. Any vehicle, whether manned or unmanned, intended for space travel is a spacecraft. A spacecraft\u27s required systems and equipment depend on the information it will acquire and the tasks it will perform. Although their levels of sophistication vary widely, they re all subject to the harsh conditions of space. Depending on the missions that each spacecraft is designed to carry out, they can be broadly classed

    Study of conceptual deep space monitor communications systems using a single earth satellite. Volume III - Appendix Final report

    Get PDF
    Condensed technical survey for deep space monitor communications system using earth satellit

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Apollo-Soyuz Doppler-tracking experiment MA-089

    Get PDF
    The Doppler tracking experiment was designed to test the feasibility of improved mapping of the earth's gravity field by the low-low satellite-to-satellite tracking method and to observe variations in the electron density of the ionosphere between the two spacecraft. Data were taken between 1:01 and 14:37 GMT on July 24, 1975. Baseline data taken earlier, while the docking module was still attached to the command and service module, indicated that the equipment operated satisfactorily. The ionospheric data contained in the difference between the Doppler signals at the two frequencies are of excellent quality, resulting in valuable satellite-to-satellite observations, never made before, of wave phenomena in the ionosphere. The gravity data were corrupted by an unexpectedly high noise level of as-yet-undetermined origin, with periods greater than 150 seconds, that prevented unambiguous identification of gravity-anomaly signatures
    • …
    corecore