55 research outputs found

    Generalized Sensorless and Advanced Control of Synchronous Reluctance Machines

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Speed Sensorless Induction Motor Drive Control for Electric Vehicles

    Get PDF
    Fast diminishing fossil fuel resources, deterioration in air quality and concerns for environmental protection, continuously promote the interest in the research and development of Alternative Energy Vehicles (AEVs). Traction motor drive is an integral part and common electric propulsion system in all kinds of AEVs. It plays an utmost significant role in the development of electrified transport industry. Application of Induction Motor (IM) drive is not only limited to the domestic and industrial applications but also has an ubiquitous influence in the modern electrified transport sector. IM is characterized by a simple and rugged structure, operational reliability, low maintenance, low cost, ability to operate in a hostile environment and high dynamic performance. However, IM is one of the widely accepted choices by Electric Vehicles (EVs) manufacturer. At present, Variable speed IM drive is almost replacing the traditional DC motor drive in a wide range of applications including EVs where a fast dynamic response is required. It became possible after the technological advancement and development in the field of power switching devices, digital signal processing and recently intelligent control systems have led to great improvements in the dynamic performance of traction drives. Speed Sensorless control strategies offer better system’s reliability and robustness and reduce the drive cost, size and maintenance requirements. Sensorless IM drives have been applied on medium and high speed applications successfully. However, instability at low speed and under different load disturbance conditions are still a critical problem in this research field and has not been robustly achieved. Some application such as traction drives and cranes are required to maintain the desired level of torque down to low speed levels with uncertain load torque disturbance conditions. Speed and torque control is more important particularly in motor-in-wheel traction drive train configuration EVs where vehicle wheel rim is directly connected to the motor shaft to control the speed and torque. The main purpose of this research is to improve the dynamic performance of conventional proportional-integral controller based model reference adaptive system (PI-MRAS) speed observer by using several speed profiles under different load torque disturbance conditions, which is uncertain during the whole vehicle operation apart from the vehicle own load. Since, vehicle has to face different road conditions and aerodynamic effects which continuously change the net load torque effect on the traction drive. This thesis proposes different novel methods based on the fuzzy logic control (FLC) and sliding mode control (SMC) with rotor flux MRAS. Numerous simulations and experimental tests designed with respect to the EV operation are carried out to investigate the speed estimation performance of the proposed schemes and compared with the PI-MRAS speed observer. For simulation and experimental purpose, Matlab-Simulink environment and dSPACE DS-1104 controller board are used respectively. The results presented in this thesis show great performance improvements of the proposed schemes in speed estimation & load disturbance rejection capability and provide a suitable choice of speed sensoless IM drive control for EVs with cost effectiveness

    Artificial Intelligence Supported EV Electric Powertrain for Safety Improvement

    Get PDF
    As an environmentally friendly transport option, electric vehicles (EVs) are endowed with the characteristics of low fossil energy consumption and low pollutant emissions. In today's growing market share of EVs, the safety and reliability of the powertrain system will be directly related to the safety of human life. Reliability problems of EV powertrains may occur in any power electronic (PE) component and mechanical part, both sudden and cumulative. These faults in different locations and degrees will continuously threaten the life of drivers and pedestrians, bringing irreparable consequences. Therefore, monitoring and predicting the real-time health status of EV powertrain is a high-priority, arduous and challenging task. The purposes of this study are to develop AI-supported effective safety improvement techniques for EV powertrains. In the first place, a literature review is carried out to illustrate the up-to-date AI applications for solving condition monitoring and fault detection issues of EV powertrains, where recent case studies between conventional methods and AI-based methods in EV applications are compared and analysed. On this ground this study, then, focuses on the theories and techniques concerning this topic so as to tackle different challenges encountered in the actual applications. In detail, first, as for diagnosing the bearing system in the earlier fault period, a novel inferable deep distilled attention network is designed to detect multiple bearing faults. Second, a deep learning and simulation driven approach that combines the domain-adversarial neural network and the lumped-parameter thermal network (LPTN) is proposed for achieve IPMSM permanent magnet temperature estimation work. Finally, to ensure the use safety of the IGBT module, deep learning -based IGBT modules’ double pulse test (DPT) efficiency enhancement is proposed and achieved via multimodal fusion networks and graph convolution networks

    Intelligent control of induction motors

    Get PDF
    This thesis presents the development and implementation of an integral field oriented intelligent control for an induction motor (IM) drive using Fuzzy Logic Controller (FLC), and an Artificial Neural Network (ANN), employing a finite element controller and making use of a Proportional Integral (PI) adaptive controller as well. An analytical model of an induction motor drive has been developed. In order to prove the superiority of the proposed controller, the performance of this controller is compared with conventional PI-based IM drives. The performance of the proposed IM drive is investigated extensively at different operating conditions in simulation. The proposed adaptive PI-based speed controller’s performance is found to be robust and it is a potential candidate for high performance industrial drive applications. The novel work focuses on using a Finite Element Controller map (FECM) to manipulate adaptive controllers for motor control drives. A digital signal processing (DSP) board DS1104 and laboratory induction motor were used to implement the complete vector control scheme. The test results have been compared with simulated results at different dynamic operating conditions. The effectiveness of this control scheme has been evaluated, and it has been found to be more efficient than the conventional PI controller

    Comparison of shaft position estimation and correction techniques for sensorless control of surface mounted PM synchrononous motors

    Get PDF
    This thesis is a detailed study of how two error correction schemes affect the precision of shaft position estimation in state-observer techniques for sensorless control surface-mounted Permanent Magnet Synchronous Motors (PMSM), variance correction and variable PI regulation. A novel sensorless estimation technique based on Linear Kalman Filter (LKF) through constant variance correction is proposed and compared with the conventional Flux Linkage Observer (FLO) method and other state-estimation sensorless control techniques namely, Extended Kalman Filter (EKF), variable variance correction, Single Dimension Luenberger (SDL) observer and Full-Order Luenberger (FOLU) observer both through variable PI regulation. These five sensorless control techniques for PMSM are successfully implemented in the same lab-based hardware platform, i.e. full digital float-point-type DSP control inverter-fed PMSM system. Experiments are reported on each sensorless method covering position estimation, speed response, self-startup and load behaviour. Intensive analysis has also been carried out on the impact of error correction of estimated position on the steady/dynamic PMSM characteristics with different sensorless approaches. The experiment demonstrates that the novel Linear Kalman Filter can achieve the minimum average position estimation error throughout the electrical cycle of the five sensorless estimation techniques during no load operation at rated speed and also makes PMSM capable of self-startup for any initial rotor position except the dead area. A speed response experiment for LKF shows that individual speed estimation can be extracted directly from LKF state estimation for sensorless control PMSM. Experiments on the five sensorless methods proves that position error correction scheme is the dominating factor for state estimation sensorless control PMSM and better dynamic/steady control performance can be achieved using a variance correction scheme applied in EKF/LKF than with variable PI regulation applied in SDL/FOLU. The thesis also concludes that the novel Linear Kalman Filter is an optimised cost-effective sensorless estimation method for the PMSM drive industry compared with classic and Flux Linkage observers/Extended Kalman Filters
    • …
    corecore