11,121 research outputs found

    Automated seismic waveform location using multichannel coherency migration (MCM)–I: theory

    Get PDF
    With the proliferation of dense seismic networks sampling the full seismic wavefield, recorded seismic data volumes are getting bigger and automated analysis tools to locate seismic events are essential. Here, we propose a novel Multichannel Coherency Migration (MCM) method to locate earthquakes in continuous seismic data and reveal the location and origin time of seismic events directly from recorded waveforms. By continuously calculating the coherency between waveforms from different receiver pairs, MCM greatly expands the available information which can be used for event location. MCM does not require phase picking or phase identification, which allows fully automated waveform analysis. By migrating the coherency between waveforms, MCM leads to improved source energy focusing. We have tested and compared MCM to other migration-based methods in noise-free and noisy synthetic data. The tests and analysis show that MCM is noise resistant and can achieve more accurate results compared with other migration-based methods. MCM is able to suppress strong interference from other seismic sources occurring at a similar time and location. It can be used with arbitrary 3D velocity models and is able to obtain reasonable location results with smooth but inaccurate velocity models. MCM exhibits excellent location performance and can be easily parallelized giving it large potential to be developed as a real-time location method for very large datasets

    Segmentation of Fault Networks Determined from Spatial Clustering of Earthquakes

    Full text link
    We present a new method of data clustering applied to earthquake catalogs, with the goal of reconstructing the seismically active part of fault networks. We first use an original method to separate clustered events from uncorrelated seismicity using the distribution of volumes of tetrahedra defined by closest neighbor events in the original and randomized seismic catalogs. The spatial disorder of the complex geometry of fault networks is then taken into account by defining faults as probabilistic anisotropic kernels, whose structures are motivated by properties of discontinuous tectonic deformation and previous empirical observations of the geometry of faults and of earthquake clusters at many spatial and temporal scales. Combining this a priori knowledge with information theoretical arguments, we propose the Gaussian mixture approach implemented in an Expectation-Maximization (EM) procedure. A cross-validation scheme is then used and allows the determination of the number of kernels that should be used to provide an optimal data clustering of the catalog. This three-steps approach is applied to a high quality relocated catalog of the seismicity following the 1986 Mount Lewis (Ml=5.7M_l=5.7) event in California and reveals that events cluster along planar patches of about 2 km2^2, i.e. comparable to the size of the main event. The finite thickness of those clusters (about 290 m) suggests that events do not occur on well-defined euclidean fault core surfaces, but rather that the damage zone surrounding faults may be seismically active at depth. Finally, we propose a connection between our methodology and multi-scale spatial analysis, based on the derivation of spatial fractal dimension of about 1.8 for the set of hypocenters in the Mnt Lewis area, consistent with recent observations on relocated catalogs

    Unrest at Domuyo Volcano, Argentina, detected by geophysical and geodetic data and morphometric analysis

    Get PDF
    New volcanic unrest has been detected in the Domuyo Volcanic Center (DVC), to the east of the Andes Southern Volcanic Zone in Argentina. To better understand this activity, we investigated new seismic monitoring data, gravimetric and magnetic campaign data, and interferometric synthetic aperture radar (InSAR) deformation maps, and we derived an image of the magma plumbing system and the likely source of the unrest episode. Seismic events recorded during 2017-2018 nucleate beneath the southwestern flank of the DVC. Ground deformation maps derived from InSAR processing of Sentinel-1 data exhibit an inflation area exceeding 300 km2, from 2014 to at least March 2018, which can be explained by an inflating sill model located 7 km deep. The Bouguer anomaly reveals a negative density contrast of ~35 km wavelength, which is spatially coincident with the InSAR pattern. Our 3D density modeling suggests a body approximately 4-6 km deep with a density contrast of -550 kg/m3. Therefore, the geophysical and geodetic data allow identification of the plumbing system that is subject to inflation at these shallow crustal depths. We compared the presence and dimensions of the inferred doming area to the drainage patterns of the area, which support long-established incremental uplift according to morphometric analysis. Future studies will allow us to investigate further whether the new unrest is hydrothermal or magmatic in origin.Fil: Astort, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Walter, Thomas R. German Research Centre for Geosciences; AlemaniaFil: Ruiz, Francisco. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; ArgentinaFil: Sagripanti, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Nacif, Andres Antonio. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; ArgentinaFil: Acosta, Gemma. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Folguera Telichevsky, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentin

    Kinematic artifacts in prestack depth migration.

    Get PDF
    Strong refraction of waves in the migration velocity model introduces kinematic artifacts¿coherent events not corresponding to actual reflectors¿into the image volumes produced by prestack depth migration applied to individual data bins. Because individual bins are migrated independently, the migration has no access to the bin component of slowness. This loss of slowness information permits events to migrate along multiple incident-reflected ray pairs, thus introducing spurious coherent events into the image volume. This pathology occurs for all common binning strategies, including common-source, common-offset, and common-scattering angle. Since the artifacts move out with bin parameter, their effect on the final stacked image is minimal, provided that the migration velocity model is kinematically correct. However, common-image gathers may exhibit energetic primary events with substantial residual moveout, even with the kinematically accurate migration velocity model

    Insights From New Age Constraints and Sediment Volumes From the Austrian Northern Alpine Foreland Basin

    Get PDF
    Detailed characterization of variations in sediment architecture, flux, and transport processes in peri-orogenic basins offers insights into external climatic or tectonic forcings. We tested how four well-known tectonic/erosional events in the Oligocene/Miocene Alpine source area are recorded in the sediment-accumulation rates (SARs) of the deep marine sink in the Northern Alpine Foreland Basin (NAFB): exhumation of the Lepontine Dome (starting at 30 Ma) and the Tauern Window (23-21 Ma), erosion of the Augenstein Formation (∼21 Ma), and the visco-elastic relaxation of the European Plate. The Upper Austrian NAFB offers a unique opportunity to investigate external forcings on sedimentary infill due to the large amount of data on the Alpine hinterland and foreland. Deep-marine sedimentation, forming the Puchkirchen Group and the basal Hall Formation, was controlled by a basin-axial submarine channel (3–5 km wide, >100 km length). Two basin-wide unconformities were recognized in seismic-reflection data: the Northern Slope Unconformity (NSU) and the Base Hall Unconformity (BHU). We combine biostratigraphic and chemostratigraphic analyses of 316 drill-cutting samples from three wells with a large 3D-seismic-reflection data set (3300 km2, >5 km depth) to determine age and duration of the unconformities and to calculate spatially averaged SARs for the submarine channel and its overbanks, separately. Deepening of the basin, recorded by the NSU, occurred between 28.1 and 26.9 Ma. The Puchkirchen Group (26.9–19.6 Ma) is characterized by constant SARs (within standard deviation) in the channel [432–623 (t/m2/Ma)] and on the overbanks [240–340 (t/m2/Ma)]. The visco-elastic relaxation of the European Plate results in low SARs on the overbanks [186 (t/m2/Ma)], a decrease in sediment grain size in channel deposits and a decrease in sea level at the BHU (19.6–19.0 Ma). In the upper Hall Formation (19.0–18.1 Ma), clinoforms prograding from the south filled up the basin [1497 (t/m2/Ma)] within 1 Myrs. We conclude that only two of the tectonic signals are recorded in this part of the deep-marine sink, erosion of Augenstein Formation and visco-elastic relaxation of the European Plate; the exhumation of the Tauern Window and Lepontine Dome remain unrecorded

    Remote sensing and seismic data integration for the characterization of a rock slide and an artificially triggered rock fall

    Get PDF
    On May 5th, 2013 a planar rock slide (~450 m3) occurred in the village of La Riba (NE Spain), which forced the closure of the road C-240z for 6 months. This slide left a hanging block (~130 m3) suspended on the slope forcing a controlled blasting, followed by rock slope stabilization works. The volume of rock displaced during the both events was deduced from LiDAR and photogrammetry data following two approaches: subtracting pre- and post-event data and reconstructing the volume by fitting planes on the structural surfaces after a structural analysis of the slope. Information about the natural rock slide was obtained from the records of two permanent broadband seismic stations located 10 km from the site. From these seismic records, the existence of a rock slide was confirmed and its time of occurrence was determined, information that would be otherwise unknown. In addition, despite the small volume displaced during the event, its location was deduced from a single seismic station analysis. The blasting process was recorded with two high-definition (HD) video cameras and by two temporary seismic stations deployed close to the site (10 km). Partially, because only a part of the released energy is transmitted into the ground as seismic energy, and partially because the recorded seismic signal is highly dependent on the event characteristics and the geotechnical conditions of the ground materials. Nevertheless, seismic data is very well suited to detect and characterize in detail both rockfall events of different nature and size. Merging and integrating remote sensing techniques such as LiDAR or photogrammetry with seismic measurements should allow the implementation of rockfall early warning systems
    • …
    corecore