273 research outputs found

    Epileptic seizure detection and prediction based on EEG signal

    Get PDF
    Epilepsy is a kind of chronic brain disfunction, manifesting as recurrent seizures which is caused by sudden and excessive discharge of neurons. Electroencephalogram (EEG) recordings is regarded as the golden standard for clinical diagnosis of epilepsy disease. The diagnosis of epilepsy disease by professional doctors clinically is time-consuming. With the help artificial intelligence algorithms, the task of automatic epileptic seizure detection and prediction is called a research hotspot. The thesis mainly contributes to propose a solution to overfitting problem of EEG signal in deep learning and a method of multiple channels fusion for EEG features. The result of proposed method achieves outstanding performance in seizure detection task and seizure prediction task. In seizure detection task, this paper mainly explores the effect of the deep learning in small data size. This thesis designs a hybrid model of CNN and SVM for epilepsy detection compared with end-to-end classification by deep learning. Another technique for overfitting is new EEG signal generation based on decomposition and recombination of EEG in time-frequency domain. It achieved a classification accuracy of 98.8%, a specificity of 98.9% and a sensitivity of 98.4% on the classic Bonn EEG data. In seizure prediction task, this paper proposes a feature fusion method for multi-channel EEG signals. We extract a three-order tensor feature in temporal, spectral and spatial domain. UMLDA is a tensor-to-vector projection method, which ensures minimal redundancy between feature dimensions. An excellent experimental result was finally obtained, including an average accuracy of 95%, 94% F1-measure and 90% Kappa index

    Epilepsy

    Get PDF
    With the vision of including authors from different parts of the world, different educational backgrounds, and offering open-access to their published work, InTech proudly presents the latest edited book in epilepsy research, Epilepsy: Histological, electroencephalographic, and psychological aspects. Here are twelve interesting and inspiring chapters dealing with basic molecular and cellular mechanisms underlying epileptic seizures, electroencephalographic findings, and neuropsychological, psychological, and psychiatric aspects of epileptic seizures, but non-epileptic as well

    Biomarkers to Localize Seizure from Electrocorticography to Neurons Level

    Get PDF

    Elucidating the Interplay of Structure, Dynamics, and Function in the Brain’s Neural Networks.

    Full text link
    Brain’s structure, dynamics, and function are deeply intertwined. To understand how the brain functions, it is crucial to uncover the links between network structure and its dynamics. Here I examine different approaches to exploring the key connecting factors between network structure, dynamics and eventually its function. I predominantly concentrate on emergence and temporal evolution of synchronization, or coincidence of neuronal spike timings, as it has been associated with many brain functions while aberrant synchrony is implicated in many neurological disorders. Specifically, in chapter II, I investigate how the interplay of cellular properties with network coupling characteristics could affect the propensity of neural networks for synchronization. Then, in chapter III, I develop a set of measures that identify hallmarks and potentially predict autonomous network transitions from asynchronous to synchronous dynamics under various conditions. The developed metrics can be calculated in real time and therefore potentially applied in clinical situations. Finally, in chapter IV, I aim to tie the correlates of neural network dynamics to the brain function. More specifically, I elucidate dynamical underpinnings of learning and memory consolidation from in vivo recordings of mice experiencing contextual fear conditioning (CFC) and show, that the introduced notion of network stability may predict future animal performance on memory retrieval. Overall, the results presented within this dissertation underscore the importance of concurrent analysis of networks’ dynamical and structural properties. The developed approaches may prove useful beyond the specific application presented within this thesis.PhDBiophysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120768/1/mofakham_1.pd

    Learning more with less data using domain-guided machine learning: the case for health data analytics

    Get PDF
    The United States is facing a shortage of neurologists with severe consequences: a) average wait-times to see neurologists are increasing, b) patients with chronic neurological disorders are unable to receive diagnosis and care in a timely fashion, and c) there is an increase in neurologist burnout leading to physical and emotional exhaustion. Present-day neurological care relies heavily on time-consuming visual review of patient data (e.g., neuroimaging and electroencephalography (EEG)), by expert neurologists who are already in short supply. As such, the healthcare system needs creative solutions that can increase the availability of neurologists to patient care. To meet this need, this dissertation develops a machine-learning (ML)-based decision support framework for expert neurologists that focuses the experts’ attention to actionable information extracted from heterogeneous patient data and reduces the need for expert visual review. Specifically, this dissertation introduces a novel ML framework known as domain-guided machine learning (DGML) and demonstrates its usefulness by improving the clinical treatments of two major neurological diseases, epilepsy and Alzheimer’s disease. In this dissertation, the applications of this framework are illustrated through several studies conducted in collaboration with the Mayo Clinic, Rochester, Minnesota. Chapters 3, 4, and 5 describe the application of DGML to model the transient abnormal discharges in the brain activity of epilepsy patients. These studies utilized the intracranial EEG data collected from epilepsy patients to delineate seizure generating brain regions without observing actual seizures; whereas, Chapters 6, 7, 8, and 9 describe the application of DGML to model the subtle but permanent changes in brain function and anatomy, and thereby enable the early detection of chronic epilepsy and Alzheimer’s disease. These studies utilized the scalp EEG data of epilepsy patients and two population-level multimodal imaging datasets collected from elderly individuals

    EXPERIMENTAL-COMPUTATIONAL ANALYSIS OF VIGILANCE DYNAMICS FOR APPLICATIONS IN SLEEP AND EPILEPSY

    Get PDF
    Epilepsy is a neurological disorder characterized by recurrent seizures. Sleep problems can cooccur with epilepsy, and adversely affect seizure diagnosis and treatment. In fact, the relationship between sleep and seizures in individuals with epilepsy is a complex one. Seizures disturb sleep and sleep deprivation aggravates seizures. Antiepileptic drugs may also impair sleep quality at the cost of controlling seizures. In general, particular vigilance states may inhibit or facilitate seizure generation, and changes in vigilance state can affect the predictability of seizures. A clear understanding of sleep-seizure interactions will therefore benefit epilepsy care providers and improve quality of life in patients. Notable progress in neuroscience research—and particularly sleep and epilepsy—has been achieved through experimentation on animals. Experimental models of epilepsy provide us with the opportunity to explore or even manipulate the sleep-seizure relationship in order to decipher different aspects of their interactions. Important in this process is the development of techniques for modeling and tracking sleep dynamics using electrophysiological measurements. In this dissertation experimental and computational approaches are proposed for modeling vigilance dynamics and their utility demonstrated in nonepileptic control mice. The general framework of hidden Markov models is used to automatically model and track sleep state and dynamics from electrophysiological as well as novel motion measurements. In addition, a closed-loop sensory stimulation technique is proposed that, in conjunction with this model, provides the means to concurrently track and modulate 3 vigilance dynamics in animals. The feasibility of the proposed techniques for modeling and altering sleep are demonstrated for experimental applications related to epilepsy. Finally, preliminary data from a mouse model of temporal lobe epilepsy are employed to suggest applications of these techniques and directions for future research. The methodologies developed here have clear implications the design of intelligent neuromodulation strategies for clinical epilepsy therapy

    Towards Accurate Forecasting of Epileptic Seizures: Artificial Intelligence and Effective Connectivity Findings

    Get PDF
    L’épilepsie est une des maladies neurologiques les plus fréquentes, touchant près d’un pourcent de la population mondiale. De nos jours, bien qu’environ deux tiers des patients épileptiques répondent adéquatement aux traitements pharmacologiques, il reste qu’un tiers des patients doivent vivre avec des crises invalidantes et imprévisibles. Quoique la chirurgie d’épilepsie puisse être une autre option thérapeutique envisageable, le recours à la chirurgie de résection demeure très faible en partie pour des raisons diverses (taux de réussite modeste, peur des complications, perceptions négatives). D’autres avenues de traitement sont donc souhaitables. Une piste actuellement explorée par des groupes de chercheurs est de tenter de prédire les crises à partir d’enregistrements de l’activité cérébrale des patients. La capacité de prédire la survenue de crises permettrait notamment aux patients, aidants naturels ou personnels médical de prendre des mesures de précaution pour éviter les désagréments reliés aux crises voire même instaurer un traitement pour les faire avorter. Au cours des dernières années, d’importants efforts ont été déployés pour développer des algorithmes de prédiction de crises et d’en améliorer les performances. Toutefois, le manque d’enregistrements électroencéphalographiques intracrâniens (iEEG) de longue durée de qualité, la quantité limitée de crises, ainsi que la courte durée des périodes interictales constituaient des obstacles majeurs à une évaluation adéquate de la performance des algorithmes de prédiction de crises. Récemment, la disponibilité en ligne d’enregistrements iEEG continus avec échantillonnage bilatéral (des deux hémisphères) acquis chez des chiens atteints d’épilepsie focale à l’aide du dispositif de surveillance ambulatoire implantable NeuroVista a partiellement facilité cette tâche. Cependant, une des limitations associées à l’utilisation de ces données durant la conception d’un algorithme de prédiction de crises était l’absence d’information concernant la zone exacte de début des crises (information non fournie par les gestionnaires de cette base de données en ligne). Le premier objectif de cette thèse était la mise en oeuvre d’un algorithme précis de prédiction de crises basé sur des enregistrements iEEG canins de longue durée. Les principales contributions à cet égard incluent une localisation quantitative de la zone d’apparition des crises (basée sur la fonction de transfert dirigé –DTF), l’utilisation d’une nouvelle fonction de coût via l’algorithme génétique proposé, ainsi qu’une évaluation quasi-prospective des performances de prédiction (données de test d’un total de 893 jours). Les résultats ont montré une amélioration des performances de prédiction par rapport aux études antérieures, atteignant une sensibilité moyenne de 84.82 % et un temps en avertissement de 10 %. La DTF, utilisée précédemment comme mesure de connectivité pour déterminer le réseau épileptique (objectif 1), a été préalablement validée pour quantifier les relations causales entre les canaux lorsque les exigences de quasi-stationnarité sont satisfaites. Ceci est possible dans le cas des enregistrements canins en raison du nombre relativement faible de canaux. Pour faire face aux exigences de non-stationnarité, la fonction de transfert adaptatif pondérée par le spectre (Spectrum weighted adaptive directed transfer function - swADTF) a été introduit en tant qu’une version variant dans le temps de la DTF. Le second objectif de cette thèse était de valider la possibilité d’identifier les endroits émetteurs (ou sources) et récepteurs d’activité épileptiques en appliquant la swADTF sur des enregistrements iEEG de haute densité provenant de patients admis pour évaluation pré-chirurgicale au CHUM. Les générateurs d’activité épileptique étaient dans le volume réséqué pour les patients ayant des bons résultats post-chirurgicaux alors que différents foyers ont été identifiés chez les patients ayant eu de mauvais résultats postchirurgicaux. Ces résultats démontrent la possibilité d’une identification précise des sources et récepteurs d’activités épileptiques au moyen de la swADTF ouvrant la porte à la possibilité d’une meilleure sélection d’électrodes de manière quantitative dans un contexte de développement d’algorithme de prédiction de crises chez l’humain. Dans le but d’explorer de nouvelles avenues pour la prédiction de crises épileptiques, un nouveau précurseur a aussi été étudié combinant l’analyse des spectres d’ordre supérieur et les réseaux de neurones artificiels (objectif 3). Les résultats ont montré des différences statistiquement significatives (p<0.05) entre l’état préictal et l’état interictal en utilisant chacune des caractéristiques extraites du bi-spectre. Utilisées comme entrées à un perceptron multicouche, l’entropie bispectrale normalisée, l’entropie carré normalisée, et la moyenne ont atteint des précisions respectives de 78.11 %, 72.64% et 73.26%. Les résultats de cette thèse confirment la faisabilité de prédiction de crises à partir d’enregistrements d’électroencéphalographie intracrâniens. Cependant, des efforts supplémentaires en termes de sélection d’électrodes, d’extraction de caractéristiques, d’utilisation des techniques d’apprentissage profond et d’implémentation Hardware, sont nécessaires avant l’intégration de ces approches dans les dispositifs implantables commerciaux.----------ABSTRACT Epilepsy is a chronic condition characterized by recurrent “unpredictable” seizures. While the first line of treatment consists of long-term drug therapy about one-third of patients are said to be pharmacoresistant. In addition, recourse to epilepsy surgery remains low in part due to persisting negative attitudes towards resective surgery, fear of complications and only moderate success rates. An important direction of research is to investigate the possibility of predicting seizures which, if achieved, can lead to novel interventional avenues. The paucity of intracranial electroencephalography (iEEG) recordings, the limited number of ictal events, and the short duration of interictal periods have been important obstacles for an adequate assessment of seizure forecasting. More recently, long-term continuous bilateral iEEG recordings acquired from dogs with naturally occurring focal epilepsy, using the implantable NeuroVista ambulatory monitoring device have been made available on line for the benefit of researchers. Still, an important limitation of these recordings for seizure-prediction studies was that the seizure onset zone was not disclosed/available. The first objective of this thesis was to develop an accurate seizure forecasting algorithm based on these canine ambulatory iEEG recordings. Main contributions include a quantitative, directed transfer function (DTF)-based, localization of the seizure onset zone (electrode selection), a new fitness function for the proposed genetic algorithm (feature selection), and a quasi-prospective assessment of seizure forecasting on long-term continuous iEEG recordings (total of 893 testing days). Results showed performance improvement compared to previous studies, achieving an average sensitivity of 84.82% and a time in warning of 10 %. The DTF has been previously validated for quantifying causal relations when quasistationarity requirements are met. Although such requirements can be fulfilled in the case of canine recordings due to the relatively low number of channels (objective 1), the identification of stationary segments would be more challenging in the case of high density iEEG recordings. To cope with non-stationarity issues, the spectrum weighted adaptive directed transfer function (swADTF) was recently introduced as a time-varying version of the DTF. The second objective of this thesis was to validate the feasibility of identifying sources and sinks of seizure activity based on the swADTF using high-density iEEG recordings of patients admitted for pre-surgical monitoring at the CHUM. Generators of seizure activity were within the resected volume for patients with good post-surgical outcomes, whereas different or additional seizure foci were identified in patients with poor post-surgical outcomes. Results confirmed the possibility of accurate identification of seizure origin and propagation by means of swADTF paving the way for its use in seizure prediction algorithms by allowing a more tailored electrode selection. Finally, in an attempt to explore new avenues for seizure forecasting, we proposed a new precursor of seizure activity by combining higher order spectral analysis and artificial neural networks (objective 3). Results showed statistically significant differences (p<0.05) between preictal and interictal states using all the bispectrum-extracted features. Normalized bispectral entropy, normalized squared entropy and mean of magnitude, when employed as inputs to a multi-layer perceptron classifier, achieved held-out test accuracies of 78.11%, 72.64%, and 73.26%, respectively. Results of this thesis confirm the feasibility of seizure forecasting based on iEEG recordings; the transition into the ictal state is not random and consists of a “build-up”, leading to seizures. However, additional efforts in terms of electrode selection, feature extraction, hardware and deep learning implementation, are required before the translation of current approaches into commercial devices

    Time-frequency strategies for increasing high frequency oscillation detectability in intracerebral EEG

    No full text
    International audienceBackground: High Frequency Oscillations (HFOs) are considered to be highly representative of brain tissues capable of producing epileptic seizures. The visual review of HFOs on intracerebral electroencephalography is time-consuming and tedious, and it can be improved by time-frequency (TF) analysis. The main issue is that the signal is dominated by lower frequencies that mask the HFOs. Our aim was to flatten (i.e. whiten) the frequency spectrum to enhance the fast oscillations while preserving an optimal Signal to Noise Ratio (SNR). Method: We investigated 8 methods of data whitening based on either prewhitening or TF normalization in order to improve the detectability of HFOs. We detected all local maxima of the TF image above a range of thresholds in the HFO band. Results: We obtained the Precision and Recall curves at different SNR and for different HFO types and illustrate the added value of whitening both in the time-frequency plane and in time domain. Conclusion: The normalization strategies based on a baseline and on our proposed method (the " H0 z-score ") are more precise than the others. Significance: The H0 z-score provides an optimal framework for representing and detecting HFOs, independent of a baseline and a priori frequency bands
    • …
    corecore