20 research outputs found

    Multi-view Graph Embedding with Hub Detection for Brain Network Analysis

    Full text link
    Multi-view graph embedding has become a widely studied problem in the area of graph learning. Most of the existing works on multi-view graph embedding aim to find a shared common node embedding across all the views of the graph by combining the different views in a specific way. Hub detection, as another essential topic in graph mining has also drawn extensive attentions in recent years, especially in the context of brain network analysis. Both the graph embedding and hub detection relate to the node clustering structure of graphs. The multi-view graph embedding usually implies the node clustering structure of the graph based on the multiple views, while the hubs are the boundary-spanning nodes across different node clusters in the graph and thus may potentially influence the clustering structure of the graph. However, none of the existing works in multi-view graph embedding considered the hubs when learning the multi-view embeddings. In this paper, we propose to incorporate the hub detection task into the multi-view graph embedding framework so that the two tasks could benefit each other. Specifically, we propose an auto-weighted framework of Multi-view Graph Embedding with Hub Detection (MVGE-HD) for brain network analysis. The MVGE-HD framework learns a unified graph embedding across all the views while reducing the potential influence of the hubs on blurring the boundaries between node clusters in the graph, thus leading to a clear and discriminative node clustering structure for the graph. We apply MVGE-HD on two real multi-view brain network datasets (i.e., HIV and Bipolar). The experimental results demonstrate the superior performance of the proposed framework in brain network analysis for clinical investigation and application

    Mining Brain Networks using Multiple Side Views for Neurological Disorder Identification

    Full text link
    Mining discriminative subgraph patterns from graph data has attracted great interest in recent years. It has a wide variety of applications in disease diagnosis, neuroimaging, etc. Most research on subgraph mining focuses on the graph representation alone. However, in many real-world applications, the side information is available along with the graph data. For example, for neurological disorder identification, in addition to the brain networks derived from neuroimaging data, hundreds of clinical, immunologic, serologic and cognitive measures may also be documented for each subject. These measures compose multiple side views encoding a tremendous amount of supplemental information for diagnostic purposes, yet are often ignored. In this paper, we study the problem of discriminative subgraph selection using multiple side views and propose a novel solution to find an optimal set of subgraph features for graph classification by exploring a plurality of side views. We derive a feature evaluation criterion, named gSide, to estimate the usefulness of subgraph patterns based upon side views. Then we develop a branch-and-bound algorithm, called gMSV, to efficiently search for optimal subgraph features by integrating the subgraph mining process and the procedure of discriminative feature selection. Empirical studies on graph classification tasks for neurological disorders using brain networks demonstrate that subgraph patterns selected by the multi-side-view guided subgraph selection approach can effectively boost graph classification performances and are relevant to disease diagnosis.Comment: in Proceedings of IEEE International Conference on Data Mining (ICDM) 201

    SEARCHING NEUROIMAGING BIOMARKERS IN MENTAL DISORDERS WITH GRAPH AND MULTIMODAL FUSION ANALYSIS OF FUNCTIONAL CONNECTIVITY

    Get PDF
    Mental disorders such as schizophrenia (SZ), bipolar (BD), and major depression disorders (MDD) can cause severe symptoms and life disruption. They share some symptoms, which can pose a major clinical challenge to their differentiation. Objective biomarkers based on neuroimaging may help to improve diagnostic accuracy and facilitate optimal treatment for patients. Over the last decades, non-invasive in-vivo neuroimaging techniques such as magnetic resonance imaging (MRI) have been increasingly applied to measure structure and function in human brains. With functional MRI (fMRI) or structural MRI (sMRI), studies have identified neurophysiological deficits in patients’ brain from different perspective. Functional connectivity (FC) analysis is an approach that measures functional integration in brains. By assessing the temporal coherence of the hemodynamic activity among brain regions, FC is considered capable of characterizing the large-scale integrity of neural activity. In this work, we present two data analysis frameworks for biomarker detection on brain imaging with FC, 1) graph analysis of FC and 2) multimodal fusion analysis, to better understand the human brain. Graph analysis reveals the interaction among brain regions based on graph theory, while the multimodal fusion framework enables us to utilize the strength of different imaging modalities through joint analysis. Four applications related to FC using these frameworks were developed. First, FC was estimated using a model-based approach, and revealed altered the small-world network structure in SZ. Secondly, we applied graph analysis on functional network connectivity (FNC) to differentiate BD and MDD during resting-state. Thirdly, two functional measures, FNC and fractional amplitude of low frequency fluctuations (fALFF), were spatially overlaid to compare the FC and spatial alterations in SZ. And finally, we utilized a multimodal fusion analysis framework, multi-set canonical correlation analysis + joint independent component analysis (mCCA+jICA) to link functional and structural abnormalities in BD and MDD. We also evaluated the accuracy of predictive diagnosis through classifiers generated on the selected features. In summary, via the two frameworks, our work has made several contributions to advance FC analysis, which improves our understanding of underlying brain function and structure, and our findings may be ultimately useful for the development of biomarkers of mental disease

    Learning Interpretable Features of Graphs and Time Series Data

    Get PDF
    Graphs and time series are two of the most ubiquitous representations of data of modern time. Representation learning of real-world graphs and time-series data is a key component for the downstream supervised and unsupervised machine learning tasks such as classification, clustering, and visualization. Because of the inherent high dimensionality, representation learning, i.e., low dimensional vector-based embedding of graphs and time-series data is very challenging. Learning interpretable features incorporates transparency of the feature roles, and facilitates downstream analytics tasks in addition to maximizing the performance of the downstream machine learning models. In this thesis, we leveraged tensor (multidimensional array) decomposition for generating interpretable and low dimensional feature space of graphs and time-series data found from three domains: social networks, neuroscience, and heliophysics. We present the theoretical models and empirical results on node embedding of social networks, biomarker embedding on fMRI-based brain networks, and prediction and visualization of multivariate time-series-based flaring and non-flaring solar events

    Neuroimaging-based Statistical Machine Learning Classification of Schizophrenia

    Get PDF
    Schizophrenia is a chronic mental disorder that affects millions in the US and tens of millions globally. It is largely believed to be caused by structural and functional differences in the brain, but its exact cause is unknown. Due to the complicated structure of the human brain, its functional connections are often represented by networks. In this thesis, we utilize brain networks generated by functional magnetic resonance imaging (fMRI) data to develop machine learning classification models that can accurately make inferences on single subjects to predict the diagnosis of schizophrenia. We look at a number of local and global connectivity measures derived from correlation-based functional connectivity matrices to do so, using a dataset provided by the National Institute of Health Center of Biomedical Research Excellence (COBRE) and 1000 Functional Connectomes project. Preprocessing and analysis of data is done through the CONN functional connectivity toolbox and MATLAB. Using a subset of subjects and global metrics, we first conduct a preliminary group comparison to determine the existence of a significant difference between patient and control groups with respect to the selected metrics. Then, we investigate machine learning classifiers using k-nearest neighbors and support vector machine models on the full dataset using an expanded set of metrics. Using these models, we observe classification accuracy rates of up to approximately 84% on testing sets using 10-fold cross validation, with sensitivity of approximately 91% and specificity of 77% using a polynomial kernel. This rate is fairly consistent with that of other studies, which generally report classification accuracies of 60-90%. As such, the models we have developed demonstrate the potential of networks in determining the nature of schizophrenia and the uses of statistical learning in the diagnosis of neuropsychiatric disorders.Bachelor of Scienc
    corecore