767 research outputs found

    A History of Polyvalent Structural Parameters: the Case of Instrument Variable Estimators

    Get PDF

    Gaussian Process Structural Equation Models with Latent Variables

    Full text link
    In a variety of disciplines such as social sciences, psychology, medicine and economics, the recorded data are considered to be noisy measurements of latent variables connected by some causal structure. This corresponds to a family of graphical models known as the structural equation model with latent variables. While linear non-Gaussian variants have been well-studied, inference in nonparametric structural equation models is still underdeveloped. We introduce a sparse Gaussian process parameterization that defines a non-linear structure connecting latent variables, unlike common formulations of Gaussian process latent variable models. The sparse parameterization is given a full Bayesian treatment without compromising Markov chain Monte Carlo efficiency. We compare the stability of the sampling procedure and the predictive ability of the model against the current practice.Comment: 12 pages, 6 figure

    Identifying Causal Effects Using Instrumental Variables from the Auxiliary Population

    Full text link
    Instrumental variable approaches have gained popularity for estimating causal effects in the presence of unmeasured confounding. However, the availability of instrumental variables in the primary population is often challenged due to stringent and untestable assumptions. This paper presents a novel method to identify and estimate causal effects in the primary population by utilizing instrumental variables from the auxiliary population, incorporating a structural equation model, even in scenarios with nonlinear treatment effects. Our approach involves using two datasets: one from the primary population with joint observations of treatment and outcome, and another from the auxiliary population providing information about the instrument and treatment. Our strategy differs from most existing methods by not depending on the simultaneous measurements of instrument and outcome. The central idea for identifying causal effects is to establish a valid substitute through the auxiliary population, addressing unmeasured confounding. This is achieved by developing a control function and projecting it onto the function space spanned by the treatment variable. We then propose a three-step estimator for estimating causal effects and derive its asymptotic results. We illustrate the proposed estimator through simulation studies, and the results demonstrate favorable performance. We also conduct a real data analysis to evaluate the causal effect between vitamin D status and BMI.Comment: 19 page

    Resurgence of the Endogeneity-Backed Instrumental Variable Methods

    Get PDF
    This paper investigates the nature of the IV method for tackling endogeneity. By tracing the rise and fall of the method in macroeconometrics and its subsequent revival in microeconometrics, it pins the method down to an implicit model respecification device—breaking the circular causality of simultaneous relations by redefining it as an asymmetric one conditioning on a non-optimal conditional expectation of the assumed endogenous explanatory variable, thus rejecting that variable as a valid conditional variable. The revealed nature explains why the IV route is popular for models where endogeneity is superfluous whereas measurement errors are of the key concern
    • …
    corecore