821 research outputs found

    Integration of breast cancer gene signatures based on graph centrality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Various gene-expression signatures for breast cancer are available for the prediction of clinical outcome. However due to small overlap between different signatures, it is challenging to integrate existing disjoint signatures to provide a unified insight on the association between gene expression and clinical outcome.</p> <p>Results</p> <p>In this paper, we propose a method to integrate different breast cancer gene signatures by using graph centrality in a context-constrained protein interaction network (PIN). The context-constrained PIN for breast cancer is built by integrating complete PIN and various gene signatures reported in literatures. Then, we use graph centralities to quantify the importance of genes to breast cancer. Finally, we get reliable gene signatures that are consisted by the genes with high graph centrality. The genes which are well-known breast cancer genes, such as TP53 and BRCA1, are ranked extremely high in our results. Compared with previous results by functional enrichment analysis, graph centralities, especially the eigenvector centrality and subgraph centrality, based gene signatures are more tightly related to breast cancer. We validate these signatures on genome-wide microarray dataset and found strong association between the expression of these signature genes and pathologic parameters.</p> <p>Conclusions</p> <p>In summary, graph centralities provide a novel way to connect different cancer signatures and to understand the mechanism of relationship between gene expression and clinical outcome of breast cancer. Moreover, this method is not only can be used on breast cancer, but also can be used on other gene expression related diseases and drug studies.</p

    Predicting potential drugs and drug-drug interactions for drug repositioning

    Get PDF
    The purpose of drug repositioning is to predict novel treatments for existing drugs. It saves time and reduces cost in drug discovery, especially in preclinical procedures. In drug repositioning, the challenging objective is to identify reasonable drugs with strong evidence. Recently, benefiting from various types of data and computational strategies, many methods have been proposed to predict potential drugs. Signature-based methods use signatures to describe a specific disease condition and match it with drug-induced transcriptomic profiles. For a disease signature, a list of potential drugs is produced based on matching scores. In many studies, the top drugs on the list are identified as potential drugs and verified in various ways. However, there are a few limitations in existing methods: (1) For many diseases, especially cancers, the tissue samples are often heterogeneous and multiple subtypes are involved. It is challenging to identify a signature from such a group of profiles. (2) Genes are treated as independent elements in many methods, while they may associate with each other in the given condition. (3) The disease signatures cannot identify potential drugs for personalized treatments. In order to address those limitations, I propose three strategies in this dissertation. (1) I employ clustering methods to identify sub-signatures from the heterogeneous dataset, then use a weighting strategy to concatenate them together. (2) I utilize human protein complex (HPC) information to reflect the dependencies among genes and identify an HPC signature to describe a specific type of cancer. (3) I use an HPC strategy to identify signatures for drugs, then predict a list of potential drugs for each patient. Besides predicting potential drugs directly, more indications are essential to enhance my understanding in drug repositioning studies. The interactions between biological and biomedical entities, such as drug-drug interactions (DDIs) and drug-target interactions (DTIs), help study mechanisms behind the repurposed drugs. Machine learning (ML), especially deep learning (DL), are frontier methods in predicting those interactions. Network strategies, such as constructing a network from interactions and studying topological properties, are commonly used to combine with other methods to make predictions. However, the interactions may have different functions, and merging them in a single network may cause some biases. In order to solve it, I construct two networks for two types of DDIs and employ a graph convolutional network (GCN) model to concatenate them together. In this dissertation, the first chapter introduces background information, objectives of studies, and structure of the dissertation. After that, a comprehensive review is provided in Chapter 2. Biological databases, methods and applications in drug repositioning studies, and evaluation metrics are discussed. I summarize three application scenarios in Chapter 2. The first method proposed in Chapter 3 considers the issue of identifying a cancer gene signature and predicting potential drugs. The k-means clustering method is used to identify highly reliable gene signatures. The identified signature is used to match drug profiles and identify potential drugs for the given disease. The second method proposed in Chapter 4 uses human protein complex (HPC) information to identify a protein complex signature, instead of a gene signature. This strategy improves the prediction accuracy in the experiments of cancers. Chapter 5 introduces the signature-based method in personalized cancer medicine. The profiles of a given drug are used to identify a drug signature, under the HPC strategy. Each patient has a profile, which is matched with the drug signature. Each patient has a different list of potential drugs. Chapter 6 propose a graph convolutional network with multi-kernel to predict DDIs. This method constructs two DDI kernels and concatenates them in the GCN model. It achieves higher performance in predicting DDIs than three state-of-the-art methods. In summary, this dissertation has proposed several computational algorithms for drug repositioning. Experimental results have shown that the proposed methods can achieve very good performance

    Identification of new key genes and their association with breast cancer occurrence and poor survival using in silico and in vitro methods

    Get PDF
    Breast cancer is one of the most prevalent types of cancer diagnosed globally and continues to have a significant impact on the global number of cancer deaths. Despite all efforts of epidemiological and experimental research, therapeutic concepts in cancer are still unsatisfactory. Gene expression datasets are widely used to discover the new biomarkers and molecular therapeutic targets in diseases. In the present study, we analyzed four datasets using R packages with accession number GSE29044, GSE42568, GSE89116, and GSE109169 retrieved from NCBI-GEO and differential expressed genes (DEGs) were identified. Protein–protein interaction (PPI) network was constructed to screen the key genes. Subsequently, the GO function and KEGG pathways were analyzed to determine the biological function of key genes. Expression profile of key genes was validated in MCF-7 and MDA-MB-231 human breast cancer cell lines using qRT-PCR. Overall expression level and stage wise expression pattern of key genes was determined by GEPIA. The bc-GenExMiner was used to compare expression level of genes among groups of patients with respect to age factor. OncoLnc was used to analyze the effect of expression levels of LAMA2, TIMP4, and TMTC1 on the survival of breast cancer patients. We identified nine key genes, of which COL11A1, MMP11, and COL10A1 were found up-regulated and PCOLCE2, LAMA2, TMTC1, ADAMTS5, TIMP4, and RSPO3 were found down-regulated. Similar expression pattern of seven among nine genes (except ADAMTS5 and RSPO3) was observed in MCF-7 and MDA-MB-231 cells. Further, we found that LAMA2, TMTC1, and TIMP4 were significantly expressed among different age groups of patients. LAMA2 and TIMP4 were found significantly associated and TMTC1 was found less correlated with breast cancer occurrence. We found that the expression level of LAMA2, TIMP4, and TMTC1 was abnormal in all TCGA tumors and significantly associated with poor survival.Indian Council of Medical Research | Ref. BMI/11/(35)/2020MICINN | Ref. RYC-2017-2289

    Functional and Topological Properties in Hepatocellular Carcinoma Transcriptome

    Get PDF
    Hepatocellular carcinoma (HCC) is a leading cause of global cancer mortality. However, little is known about the precise molecular mechanisms involved in tumor formation and pathogenesis. The primary goal of this study was to elucidate genome-wide molecular networks involved in development of HCC with multiple etiologies by exploring high quality microarray data. We undertook a comparative network analysis across 264 human microarray profiles monitoring transcript changes in healthy liver, liver cirrhosis, and HCC with viral and alcoholic etiologies. Gene co-expression profiling was used to derive a consensus gene relevance network of HCC progression that consisted of 798 genes and 2,012 links. The HCC interactome was further confirmed to be phenotype-specific and non-random. Additionally, we confirmed that co-expressed genes are more likely to share biological function, but not sub-cellular localization. Analysis of individual HCC genes revealed that they are topologically central in a human protein-protein interaction network. We used quantitative RT-PCR in a cohort of normal liver tissue (n = 8), hepatitis C virus (HCV)-induced chronic liver disease (n = 9), and HCC (n = 7) to validate co-expressions of several well-connected genes, namely ASPM, CDKN3, NEK2, RACGAP1, and TOP2A. We show that HCC is a heterogeneous disorder, underpinned by complex cross talk between immune response, cell cycle, and mRNA translation pathways. Our work provides a systems-wide resource for deeper understanding of molecular mechanisms in HCC progression and may be used further to define novel targets for efficient treatment or diagnosis of this disease

    INTEGRATIVE ANALYSIS OF OMICS DATA IN ADULT GLIOMA AND OTHER TCGA CANCERS TO GUIDE PRECISION MEDICINE

    Get PDF
    Transcriptomic profiling and gene expression signatures have been widely applied as effective approaches for enhancing the molecular classification, diagnosis, prognosis or prediction of therapeutic response towards personalized therapy for cancer patients. Thanks to modern genome-wide profiling technology, scientists are able to build engines leveraging massive genomic variations and integrating with clinical data to identify “at risk” individuals for the sake of prevention, diagnosis and therapeutic interventions. In my graduate work for my Ph.D. thesis, I have investigated genomic sequencing data mining to comprehensively characterise molecular classifications and aberrant genomic events associated with clinical prognosis and treatment response, through applying high-dimensional omics genomic data to promote the understanding of gene signatures and somatic molecular alterations contributing to cancer progression and clinical outcomes. Following this motivation, my dissertation has been focused on the following three topics in translational genomics. 1) Characterization of transcriptomic plasticity and its association with the tumor microenvironment in glioblastoma (GBM). I have integrated transcriptomic, genomic, protein and clinical data to increase the accuracy of GBM classification, and identify the association between the GBM mesenchymal subtype and reduced tumorpurity, accompanied with increased presence of tumor-associated microglia. Then I have tackled the sole source of microglial as intrinsic tumor bulk but not their corresponding neurosphere cells through both transcriptional and protein level analysis using a panel of sphere-forming glioma cultures and their parent GBM samples.FurthermoreI have demonstrated my hypothesis through longitudinal analysis of paired primary and recurrent GBM samples that the phenotypic alterations of GBM subtypes are not due to intrinsic proneural-to-mesenchymal transition in tumor cells, rather it is intertwined with increased level of microglia upon disease recurrence. Collectively I have elucidated the critical role of tumor microenvironment (Microglia and macrophages from central nervous system) contributing to the intra-tumor heterogeneity and accurate classification of GBM patients based on transcriptomic profiling, which will not only significantly impact on clinical perspective but also pave the way for preclinical cancer research. 2) Identification of prognostic gene signatures that stratify adult diffuse glioma patientsharboring1p/19q co-deletions. I have compared multiple statistical methods and derived a gene signature significantly associated with survival by applying a machine learning algorithm. Then I have identified inflammatory response and acetylation activity that associated with malignant progression of 1p/19q co-deleted glioma. In addition, I showed this signature translates to other types of adult diffuse glioma, suggesting its universality in the pathobiology of other subset gliomas. My efforts on integrative data analysis of this highly curated data set usingoptimizedstatistical models will reflect the pending update to WHO classification system oftumorsin the central nervous system (CNS). 3) Comprehensive characterization of somatic fusion transcripts in Pan-Cancers. I have identified a panel of novel fusion transcripts across all of TCGA cancer types through transcriptomic profiling. Then I have predicted fusion proteins with kinase activity and hub function of pathway network based on the annotation of genetically mobile domains and functional domain architectures. I have evaluated a panel of in -frame gene fusions as potential driver mutations based on network fusion centrality hypothesis. I have also characterised the emerging complexity of genetic architecture in fusion transcripts through integrating genomic structure and somatic variants and delineating the distinct genomic patterns of fusion events across different cancer types. Overall my exploration of the pathogenetic impact and clinical relevance of candidate gene fusions have provided fundamental insights into the management of a subset of cancer patients by predicting the oncogenic signalling and specific drug targets encoded by these fusion genes. Taken together, the translational genomic research I have conducted during my Ph.D. study will shed new light on precision medicine and contribute to the cancer research community. The novel classification concept, gene signature and fusion transcripts I have identified will address several hotly debated issues in translational genomics, such as complex interactions between tumor bulks and their adjacent microenvironments, prognostic markers for clinical diagnostics and personalized therapy, distinct patterns of genomic structure alterations and oncogenic events in different cancer types, therefore facilitating our understanding of genomic alterations and moving us towards the development of precision medicine

    From genes to networks: in systematic points of view

    Get PDF
    We present a report of the BIOCOMP'10 - The 2010 International Conference on Bioinformatics & Computational Biology and other related work in the area of systems biology

    An integrative approach to identifying cancer chemoresistance-associated pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resistance to chemotherapy severely limits the effectiveness of chemotherapy drugs in treating cancer. Still, the mechanisms and critical pathways that contribute to chemotherapy resistance are relatively unknown. This study elucidates the chemoresistance-associated pathways retrieved from the integrated biological interaction networks and identifies signature genes relevant for chemotherapy resistance.</p> <p>Methods</p> <p>An integrated network was constructed by collecting multiple metabolic interactions from public databases and the k-shortest path algorithm was implemented to identify chemoresistant related pathways. The identified pathways were then scored using differential expression values from microarray data in chemosensitive and chemoresistant ovarian and lung cancers. Finally, another pathway database, Reactome, was used to evaluate the significance of genes within each filtered pathway based on topological characteristics.</p> <p>Results</p> <p>By this method, we discovered pathways specific to chemoresistance. Many of these pathways were consistent with or supported by known involvement in chemotherapy. Experimental results also indicated that integration of pathway structure information with gene differential expression analysis can identify dissimilar modes of gene reactions between chemosensitivity and chemoresistance. Several identified pathways can increase the development of chemotherapeutic resistance and the predicted signature genes are involved in drug resistant during chemotherapy. In particular, we observed that some genes were key factors for joining two or more metabolic pathways and passing down signals, which may be potential key targets for treatment.</p> <p>Conclusions</p> <p>This study is expected to identify targets for chemoresistant issues and highlights the interconnectivity of chemoresistant mechanisms. The experimental results not only offer insights into the mode of biological action of drug resistance but also provide information on potential key targets (new biological hypothesis) for further drug-development efforts.</p
    corecore