62 research outputs found

    Detection & isolation of sensor and actuator additive faults in a 4-mecanum wheeled mobile robot (4-MWMR)

    Get PDF
    International audienceIn this paper, the fault detection and isolation problem regarding actuation and sensing of a 4-mecanum wheeled mobile robot (4-MWMR) is studied. The challenge with respect to the current state of the art lies in detecting and distinguishing wheel sensor from wheel actuator additive faults for this kind of robots. An approach based on generating residuals is proposed. Sensor faults isolation is based on simply analyzing residual signatures which are different under each sensor fault. Due to omni-move properties, actuator faults are, however, more difficult to be isolated. More residual characteristics must be taken into consideration to achieve the isolation

    Observer design for Takagi-Sugeno Lipschitz systems affected by disturbances using quadratic boundedness

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn this paper, a proportional observer design using quadratic boundedness is proposed in order to estimate the state of a system described by a Takagi-Sugeno model with a Lipschitz nonlinearity term, and affected by unknown disturbances. The conditions for ensuring that the error between the real and the estimated state converge within an ellipsoidal region about zero, are provided in the form of a linear matrix inequality (LMI) formulation. Then, the simulation results of this approach applied to a four-wheeled omni-directional mobile robot will be shown.Peer ReviewedPostprint (author's final draft

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Real-time fault diagnosis and fault-tolerant control

    Full text link

    Sensor Fault Estimation Using LPV Sliding Mode Observers with Erroneous Scheduling Parameters

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.This paper proposes a linear parameter-varying sliding mode observer for the purpose of simultaneously estimating the system states and reconstructing sensor faults. Furthermore, some of the measured scheduling parameters are also assumed to be unreliable, and the corresponding values used in the observer are adapted to maintain the performance level of the observer. The adaptive algorithm is driven by the ‘equivalent output error injection’ signal associated with the reduced-order sliding motion. Sufficient conditions are given to ensure asymptotic stability of the state estimation error system, ensuring both the state estimation errors and the estimation errors associated with the scheduling parameters converge to zero. The efficacy of the scheme has been evaluated based upon an industrial high-fidelity aircraft benchmark scenario involving a simultaneous total loss of airspeed and angle of attack measurements
    • …
    corecore