88,566 research outputs found

    The application of artificial neural networks to the interpretation and classification of freshwater benthic invertebrate communities

    Get PDF
    This thesis presents a thorough and principled investigation into the application of artificial neural networks to the biological monitoring of freshwater. It contains original ideas on the classification and interpretation of benthic macroinvertebrates, and aims to demonstrate their superiority over the biotic systems currently used in the UK to report river water quality. The conceptual basis of a new biological classification system is described, and a full review and analysis of a number of river data sets is presented. The biological classification is compared to the common biotic systems using data from the Upper Trent catchment. This data contained 292 expertly classified invertebrate samples identified to mixed taxonomic levels. The neural network experimental work concentrates on the classification of the invertebrate samples into biological class, where only a subset of the sample is used to form the classification. Other experimentation is conducted into the identification of novel input samples, the classification of samples from different biotopes and the use of prior information in the neural network models. The biological classification is shown to provide an intuitive interpretation of a graphical representation, generated without reference to the class labels, of the Upper Trent data. The selection of key indicator taxa is considered using three different approaches; one novel, one from information theory and one from classical statistical methods. Good indicators of quality class based on these analyses are found to be in good agreement with those chosen by a domain expert. The change in information associated with different levels of identification and enumeration of taxa is quantified. The feasibility of using neural network classifiers and predictors to develop numeric criteria for the biological assessment of sediment contamination in the Great Lakes is also investigated

    A Review on the Application of Natural Computing in Environmental Informatics

    Get PDF
    Natural computing offers new opportunities to understand, model and analyze the complexity of the physical and human-created environment. This paper examines the application of natural computing in environmental informatics, by investigating related work in this research field. Various nature-inspired techniques are presented, which have been employed to solve different relevant problems. Advantages and disadvantages of these techniques are discussed, together with analysis of how natural computing is generally used in environmental research.Comment: Proc. of EnviroInfo 201

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    Automatic Recognition of Mammal Genera on Camera-Trap Images using Multi-Layer Robust Principal Component Analysis and Mixture Neural Networks

    Full text link
    The segmentation and classification of animals from camera-trap images is due to the conditions under which the images are taken, a difficult task. This work presents a method for classifying and segmenting mammal genera from camera-trap images. Our method uses Multi-Layer Robust Principal Component Analysis (RPCA) for segmenting, Convolutional Neural Networks (CNNs) for extracting features, Least Absolute Shrinkage and Selection Operator (LASSO) for selecting features, and Artificial Neural Networks (ANNs) or Support Vector Machines (SVM) for classifying mammal genera present in the Colombian forest. We evaluated our method with the camera-trap images from the Alexander von Humboldt Biological Resources Research Institute. We obtained an accuracy of 92.65% classifying 8 mammal genera and a False Positive (FP) class, using automatic-segmented images. On the other hand, we reached 90.32% of accuracy classifying 10 mammal genera, using ground-truth images only. Unlike almost all previous works, we confront the animal segmentation and genera classification in the camera-trap recognition. This method shows a new approach toward a fully-automatic detection of animals from camera-trap images
    corecore