7,802 research outputs found

    Neuronal processing of translational optic flow in the visual system of the shore crab Carcinus maenas

    Get PDF
    This paper describes a search for neurones sensitive to optic flow in the visual system of the shore crab Carcinus maenas using a procedure developed from that of Krapp and Hengstenberg. This involved determining local motion sensitivity and its directional selectivity at many points within the neurone's receptive field and plotting the results on a map. Our results showed that local preferred directions of motion are independent of velocity, stimulus shape and type of motion (circular or linear). Global response maps thus clearly represent real properties of the neurones' receptive fields. Using this method, we have discovered two families of interneurones sensitive to translational optic flow. The first family has its terminal arborisations in the lobula of the optic lobe, the second family in the medulla. The response maps of the lobula neurones (which appear to be monostratified lobular giant neurones) show a clear focus of expansion centred on or just above the horizon, but at significantly different azimuth angles. Response maps such as these, consisting of patterns of movement vectors radiating from a pole, would be expected of neurones responding to self-motion in a particular direction. They would be stimulated when the crab moves towards the pole of the neurone's receptive field. The response maps of the medulla neurones show a focus of contraction, approximately centred on the horizon, but at significantly different azimuth angles. Such neurones would be stimulated when the crab walked away from the pole of the neurone's receptive field. We hypothesise that both the lobula and the medulla interneurones are representatives of arrays of cells, each of which would be optimally activated by self-motion in a different direction. The lobula neurones would be stimulated by the approaching scene and the medulla neurones by the receding scene. Neurones tuned to translational optic flow provide information on the three-dimensional layout of the environment and are thought to play a role in the judgment of heading

    Determining dramatic intensification via flashing lights in movies

    Full text link
    Movie directors and producers worldwide, in their quest to narrate a good story that warrants repeated audience viewing, use many cinematic elements to intensify and clarify the viewing experience. One such element that directors manipulate is lighting. In this paper we examine one aspect of lighting, namely flashing lights, and its role as an intensifier of dramatic effects in film. We present an algorithm for robust extraction of flashing lights and a simple mechanism to group detected flashing lights into flashing light scenes and analyze the role of these segments in story narration. In addition, we demonstrate how flashing lights detection can improve the performance of shot-based video segmentation. Experiments on a number of video sequences extracted from real movies yields good results. Our technique detects 90.4% of flashing lights. The detected flashing lights correctly eliminates 92.7% of false cuts in these sequences. In addition, data support is compiled to demonstrate the association between flashing light scenes and certain dramatic intensification events such as supernatural power, crisis or excitement.<br /

    Photography and its contributions to the "business" of crime detection.

    Full text link
    Thesis (M.B.A.)--Boston Universit

    ARSTREAM: A Neural Network Model of Auditory Scene Analysis and Source Segregation

    Full text link
    Multiple sound sources often contain harmonics that overlap and may be degraded by environmental noise. The auditory system is capable of teasing apart these sources into distinct mental objects, or streams. Such an "auditory scene analysis" enables the brain to solve the cocktail party problem. A neural network model of auditory scene analysis, called the AIRSTREAM model, is presented to propose how the brain accomplishes this feat. The model clarifies how the frequency components that correspond to a give acoustic source may be coherently grouped together into distinct streams based on pitch and spatial cues. The model also clarifies how multiple streams may be distinguishes and seperated by the brain. Streams are formed as spectral-pitch resonances that emerge through feedback interactions between frequency-specific spectral representaion of a sound source and its pitch. First, the model transforms a sound into a spatial pattern of frequency-specific activation across a spectral stream layer. The sound has multiple parallel representations at this layer. A sound's spectral representation activates a bottom-up filter that is sensitive to harmonics of the sound's pitch. The filter activates a pitch category which, in turn, activate a top-down expectation that allows one voice or instrument to be tracked through a noisy multiple source environment. Spectral components are suppressed if they do not match harmonics of the top-down expectation that is read-out by the selected pitch, thereby allowing another stream to capture these components, as in the "old-plus-new-heuristic" of Bregman. Multiple simultaneously occuring spectral-pitch resonances can hereby emerge. These resonance and matching mechanisms are specialized versions of Adaptive Resonance Theory, or ART, which clarifies how pitch representations can self-organize durin learning of harmonic bottom-up filters and top-down expectations. The model also clarifies how spatial location cues can help to disambiguate two sources with similar spectral cures. Data are simulated from psychophysical grouping experiments, such as how a tone sweeping upwards in frequency creates a bounce percept by grouping with a downward sweeping tone due to proximity in frequency, even if noise replaces the tones at their interection point. Illusory auditory percepts are also simulated, such as the auditory continuity illusion of a tone continuing through a noise burst even if the tone is not present during the noise, and the scale illusion of Deutsch whereby downward and upward scales presented alternately to the two ears are regrouped based on frequency proximity, leading to a bounce percept. Since related sorts of resonances have been used to quantitatively simulate psychophysical data about speech perception, the model strengthens the hypothesis the ART-like mechanisms are used at multiple levels of the auditory system. Proposals for developing the model to explain more complex streaming data are also provided.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-92-J-0225); Office of Naval Research (N00014-01-1-0624); Advanced Research Projects Agency (N00014-92-J-4015); British Petroleum (89A-1204); National Science Foundation (IRI-90-00530); American Society of Engineering Educatio

    The flash-preview moving window paradigm: Unpacking visual expertise one glimpse at a time

    Get PDF
    How we make sense of what we see and where best to look is shaped by our experience, our current task goals and how we first perceive our environment. An established way of demonstrating these factors work together is to study how eye movement patterns change as a function of expertise and to observe how experts can solve complex tasks after only very brief glances at a domain-specific image. The primary focus of this paper is to introduce an innovative gaze-contingent method called the ‘Flash-Preview Moving Window’ (FPMW) paradigm (Castelhano & Henderson, 2007), which was recently developed to understand our shared expertise in scene perception and how our first glimpse of a scene is used to guide our eye movement behaviour. In keeping with this special issue on visual expertise and medicine, this paper will highlight how the FPMW paradigm has the potential to resolve long-standing theoretical issues as to how, right from the very first glance, experts are able to process domain-specific images and guide their eye movements better than novices. Since FPMW is a gaze-contingent eye-tracking method, the paper will first outline the current methodological and theoretical frontier, and how the FPMW paradigm bridges established methods used to investigate visual expertise. The paper will discuss a recent example in which the FPMW was employed to investigate medical image perception expertise for the first time (Litchfield & Donovan, 2016), and by discussing the insights and challenges this method offers, this should ultimately deepen our understanding of visual expertise
    corecore