131,142 research outputs found

    Optimal modelling and experimentation for the improved sustainability of microfluidic chemical technology design

    Get PDF
    Optimization of the dynamics and control of chemical processes holds the promise of improved sustainability for chemical technology by minimizing resource wastage. Anecdotally, chemical plant may be substantially over designed, say by 35-50%, due to designers taking account of uncertainties by providing greater flexibility. Once the plant is commissioned, techniques of nonlinear dynamics analysis can be used by process systems engineers to recoup some of this overdesign by optimization of the plant operation through tighter control. At the design stage, coupling the experimentation with data assimilation into the model, whilst using the partially informed, semi-empirical model to predict from parametric sensitivity studies which experiments to run should optimally improve the model. This approach has been demonstrated for optimal experimentation, but limited to a differential algebraic model of the process. Typically, such models for online monitoring have been limited to low dimensions. Recently it has been demonstrated that inverse methods such as data assimilation can be applied to PDE systems with algebraic constraints, a substantially more complicated parameter estimation using finite element multiphysics modelling. Parametric sensitivity can be used from such semi-empirical models to predict the optimum placement of sensors to be used to collect data that optimally informs the model for a microfluidic sensor system. This coupled optimum modelling and experiment procedure is ambitious in the scale of the modelling problem, as well as in the scale of the application - a microfluidic device. In general, microfluidic devices are sufficiently easy to fabricate, control, and monitor that they form an ideal platform for developing high dimensional spatio-temporal models for simultaneously coupling with experimentation. As chemical microreactors already promise low raw materials wastage through tight control of reagent contacting, improved design techniques should be able to augment optimal control systems to achieve very low resource wastage. In this paper, we discuss how the paradigm for optimal modelling and experimentation should be developed and foreshadow the exploitation of this methodology for the development of chemical microreactors and microfluidic sensors for online monitoring of chemical processes. Improvement in both of these areas bodes to improve the sustainability of chemical processes through innovative technology. (C) 2008 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved

    ZZE-Configuration of chromophore Ɵ-153 in C-phycocyanin from Mastigocladus laminosus

    Get PDF
    The photochemistry of C-phycocyanin has been studied after denaturation in the dark. It shows an irreversible reaction which has characteristics of a Ī–,Ī–,Ī•- to Z,Z,Z-isomerization of dihydrobilins. Its amplitude depends on the reaction conditions, with a maximum corresponding to 15% conversion of one of the three PC chromophores. This chromophore is suggested to be Ɵ-153, for which recent X-ray data T. Schirmer, W. Bode, and R. Huber, J. Mol. Biol., submitted, show ring D being highly twisted out of the plane of the other rings. During unfolding, there is thus a probability of falling into the photochemically labile Z,Z,^-configuration

    Polarized time-resolved fluorescence of C-phycocyanin from Mastigocladus laminosus

    Get PDF

    An Intermediate State of the {gamma}-Aminobutyric Acid Transporter GAT1 Revealed by Simultaneous Voltage Clamp and Fluorescence

    Get PDF
    The rat {gamma}-aminobutyric acid transporter GAT1 expressed in Xenopus oocytes was labeled at Cys74, and at one or more other sites, by tetramethylrhodamine-5-maleimide, without significantly altering GAT1 function. Voltage-jump relaxation analysis showed that fluorescence increased slightly and monotonically with hyperpolarization; the fluorescence at -140 mV was ~0.8% greater than at +60 mV. The time course of the fluorescence relaxations was mostly described by a single exponential with voltage-dependent but history-independent time constants ranging from ~20 ms at +60 mV to ~150 ms at -140 mV. The fluorescence did not saturate at the most negative potentials tested, and the midpoint of the fluorescenceā€“voltage relation was at least 50 mV more negative than the midpoint of the chargeā€“voltage relation previously identified with Na+ binding to GAT1. The presence of {gamma}-aminobutyric acid did not noticeably affect the fluorescence waveforms. The fluorescence signal depended on Na+ concentration with a Hill coefficient approaching 2. Increasing Cl- concentration modestly increased and accelerated the fluorescence relaxations for hyperpolarizing jumps. The fluorescence change was blocked by the GAT1 inhibitor, NO-711. For the W68L mutant of GAT1, the fluorescence relaxations occurred only during jumps to high positive potentials, in agreement with previous suggestions that this mutant is trapped in one conformational state except at these potentials. These observations suggest that the fluorescence signals monitor a novel state of GAT1, intermediate between the E*out and Eout states of Hilgemann, D.W., and C.-C. Lu (1999. J. Gen. Physiol. 114:459ā€“476). Therefore, the study provides verification that conformational changes occur during GAT1 function
    • ā€¦
    corecore