380 research outputs found

    Autoscaling Method for Docker Swarm Towards Bursty Workload

    Get PDF
    The autoscaling mechanism of cloud computing can automatically adjust computing resources according to user needs, improve quality of service (QoS) and avoid over-provision. However, the traditional autoscaling methods suffer from oscillation and degradation of QoS when dealing with burstiness. Therefore, the autoscaling algorithm should consider the effect of bursty workloads. In this paper, we propose a novel AmRP (an autoscaling method that combines reactive and proactive mechanisms) that uses proactive scaling to launch some containers in advance, and then the reactive module performs vertical scaling based on existing containers to increase resources rapidly. Our method also integrates burst detection to alleviate the oscillation of the scaling algorithm and improve the QoS. Finally, we evaluated our approach with state-of-the-art baseline scaling methods under different workloads in a Docker Swarm cluster. Compared with the baseline methods, the experimental results show that AmRP has fewer SLA violations when dealing with bursty workloads, and its resource cost is also lower

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    Investigating the Effects of Network Dynamics on Quality of Delivery Prediction and Monitoring for Video Delivery Networks

    Get PDF
    Video streaming over the Internet requires an optimized delivery system given the advances in network architecture, for example, Software Defined Networks. Machine Learning (ML) models have been deployed in an attempt to predict the quality of the video streams. Some of these efforts have considered the prediction of Quality of Delivery (QoD) metrics of the video stream in an effort to measure the quality of the video stream from the network perspective. In most cases, these models have either treated the ML algorithms as black-boxes or failed to capture the network dynamics of the associated video streams. This PhD investigates the effects of network dynamics in QoD prediction using ML techniques. The hypothesis that this thesis investigates is that ML techniques that model the underlying network dynamics achieve accurate QoD and video quality predictions and measurements. The thesis results demonstrate that the proposed techniques offer performance gains over approaches that fail to consider network dynamics. This thesis results highlight that adopting the correct model by modelling the dynamics of the network infrastructure is crucial to the accuracy of the ML predictions. These results are significant as they demonstrate that improved performance is achieved at no additional computational or storage cost. These techniques can help the network manager, data center operatives and video service providers take proactive and corrective actions for improved network efficiency and effectiveness

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    Towards trustworthy computing on untrustworthy hardware

    Get PDF
    Historically, hardware was thought to be inherently secure and trusted due to its obscurity and the isolated nature of its design and manufacturing. In the last two decades, however, hardware trust and security have emerged as pressing issues. Modern day hardware is surrounded by threats manifested mainly in undesired modifications by untrusted parties in its supply chain, unauthorized and pirated selling, injected faults, and system and microarchitectural level attacks. These threats, if realized, are expected to push hardware to abnormal and unexpected behaviour causing real-life damage and significantly undermining our trust in the electronic and computing systems we use in our daily lives and in safety critical applications. A large number of detective and preventive countermeasures have been proposed in literature. It is a fact, however, that our knowledge of potential consequences to real-life threats to hardware trust is lacking given the limited number of real-life reports and the plethora of ways in which hardware trust could be undermined. With this in mind, run-time monitoring of hardware combined with active mitigation of attacks, referred to as trustworthy computing on untrustworthy hardware, is proposed as the last line of defence. This last line of defence allows us to face the issue of live hardware mistrust rather than turning a blind eye to it or being helpless once it occurs. This thesis proposes three different frameworks towards trustworthy computing on untrustworthy hardware. The presented frameworks are adaptable to different applications, independent of the design of the monitored elements, based on autonomous security elements, and are computationally lightweight. The first framework is concerned with explicit violations and breaches of trust at run-time, with an untrustworthy on-chip communication interconnect presented as a potential offender. The framework is based on the guiding principles of component guarding, data tagging, and event verification. The second framework targets hardware elements with inherently variable and unpredictable operational latency and proposes a machine-learning based characterization of these latencies to infer undesired latency extensions or denial of service attacks. The framework is implemented on a DDR3 DRAM after showing its vulnerability to obscured latency extension attacks. The third framework studies the possibility of the deployment of untrustworthy hardware elements in the analog front end, and the consequent integrity issues that might arise at the analog-digital boundary of system on chips. The framework uses machine learning methods and the unique temporal and arithmetic features of signals at this boundary to monitor their integrity and assess their trust level

    A Practical Review to Support the Implementation of Smart Solutions within Neighbourhood Building Stock

    Get PDF
    The construction industry has witnessed an increase in the use of digital tools and smart solutions, particularly in the realm of building energy automation. While realising the potential benefits of smart cities, a broader scope of smart initiatives is required to support the transition from smart buildings towards smart neighbourhoods, which are considered critical urban development units. To support the interplay of smart solutions between buildings and neighbourhoods, this study aimed to collect and review all the smart solutions presented in existing scientific articles, the technical literature, and realised European projects. These solutions were classified into two main sections, buildings and neighbourhoods, which were investigated through five domains: building-energy-related uses, renewable energy sources, water, waste, and open space management. The quantitative outcomes demonstrated the potential benefits of implementing smart solutions in areas ranging from buildings to neighbourhoods. Moreover, this research concluded that the true enhancement of energy conservation goes beyond the building’s energy components and can be genuinely achieved by integrating intelligent neighbourhood elements owing to their strong interdependencies. Future research should assess the effectiveness of these solutions in resource conservation

    A risk management model for commercial property development and investment in Ghana

    Get PDF
    Commercial property development and investment provide many benefits to individuals and governments around the globe; these include the generation of income for investors, employment, tax revenues, and contributions to a country‘s GDP. Yet commercial property development and investment projects involve construction, economic and management risks. A lack of effective risk assessment and management tools may lead to developers and investors incurring losses. To curtail such losses, this study sought to create a credible management model that can be used to assess and manage risks in Ghana‘s commercial property development and investment industry. An extensive literature review was done, covering all 12 identified study constructs: real estate trends and cycle, construction project management, outside advice/mentorship, spatial development, strategic factors, business management skills, PMBOK, PESTEL analysis, general management skills, governance structures, financial feasibility, professional feasibility, and risk management. Each construct was defined and operationalised. A positivistic philosophical approach was used, and quantitative approach was used to solicit data from the main respondents through the distribution of questionnaires to the target population sample. CB-SEM and SPSS version 24 were used to analyse data, SEM to test the positive relationships hypothesised between the identified variables and SPSS to analyse the demographic data. The major findings are that there is a lack of financial and professional feasibility analysis among respondents along the following factors: the PMBOK, real estate trends and cycles, general management, business management, strategic factors, spatial development, and PESTEL analysis. It was found that these factors have positive and favourable influences on CPDI projects. The study recommends that developers and investors do financial and professional feasibility studies before they embark on projects. This could improve project viability in commercial property development and investment. The study has contributed to the body of knowledge in CPDI sector by developing a new risk assessment/risk management model.Thesis (PhD) -- Faculty of Engineering Built Environment and Technology, School of the built Environment, 202

    2022 Review of Data-Driven Plasma Science

    Get PDF
    Data-driven science and technology offer transformative tools and methods to science. This review article highlights the latest development and progress in the interdisciplinary field of data-driven plasma science (DDPS), i.e., plasma science whose progress is driven strongly by data and data analyses. Plasma is considered to be the most ubiquitous form of observable matter in the universe. Data associated with plasmas can, therefore, cover extremely large spatial and temporal scales, and often provide essential information for other scientific disciplines. Thanks to the latest technological developments, plasma experiments, observations, and computation now produce a large amount of data that can no longer be analyzed or interpreted manually. This trend now necessitates a highly sophisticated use of high-performance computers for data analyses, making artificial intelligence and machine learning vital components of DDPS. This article contains seven primary sections, in addition to the introduction and summary. Following an overview of fundamental data-driven science, five other sections cover widely studied topics of plasma science and technologies, i.e., basic plasma physics and laboratory experiments, magnetic confinement fusion, inertial confinement fusion and high-energy-density physics, space and astronomical plasmas, and plasma technologies for industrial and other applications. The final section before the summary discusses plasma-related databases that could significantly contribute to DDPS. Each primary section starts with a brief introduction to the topic, discusses the state-of-the-art developments in the use of data and/or data-scientific approaches, and presents the summary and outlook. Despite the recent impressive signs of progress, the DDPS is still in its infancy. This article attempts to offer a broad perspective on the development of this field and identify where further innovations are required
    • …
    corecore