1,101 research outputs found

    Kinematic calibration of Orthoglide-type mechanisms from observation of parallel leg motions

    Get PDF
    The paper proposes a new calibration method for parallel manipulators that allows efficient identification of the joint offsets using observations of the manipulator leg parallelism with respect to the base surface. The method employs a simple and low-cost measuring system, which evaluates deviation of the leg location during motions that are assumed to preserve the leg parallelism for the nominal values of the manipulator parameters. Using the measured deviations, the developed algorithm estimates the joint offsets that are treated as the most essential parameters to be identified. The validity of the proposed calibration method and efficiency of the developed numerical algorithms are confirmed by experimental results. The sensitivity of the measurement methods and the calibration accuracy are also studied

    Design of Calibration Experiments for Identification of Manipulator Elastostatic Parameters

    Get PDF
    The paper is devoted to the elastostatic calibration of industrial robots, which is used for precise machining of large-dimensional parts made of composite materials. In this technological process, the interaction between the robot and the workpiece causes essential elastic deflections of the manipulator components that should be compensated by the robot controller using relevant elastostatic model of this mechanism. To estimate parameters of this model, an advanced calibration technique is applied that is based on the non-linear experiment design theory, which is adopted for this particular application. In contrast to previous works, it is proposed a concept of the user-defined test-pose, which is used to evaluate the calibration experiments quality. In the frame of this concept, the related optimization problem is defined and numerical routines are developed, which allow generating optimal set of manipulator configurations and corresponding forces/torques for a given number of the calibration experiments. Some specific kinematic constraints are also taken into account, which insure feasibility of calibration experiments for the obtained configurations and allow avoiding collision between the robotic manipulator and the measurement equipment. The efficiency of the developed technique is illustrated by an application example that deals with elastostatic calibration of the serial manipulator used for robot-based machining.Comment: arXiv admin note: substantial text overlap with arXiv:1211.573

    An investigation of singularities in robot kinematic chains aiming at building robot calibration models for off-line programming

    Get PDF
    Robot Calibration is a term applied to the procedures used in determining actual values that describe the geometric dimensions and mechanical characteristics of a robot or multibody structure. A robot calibration system must consist of appropriate robot modeling techniques, accurate measurement equipment, and reliable model parameter determination methods. For practical improvement of a robot's absolute accuracy, error compensation methods are required that use calibration results. Important to robot calibration methods is an accurate kinematic model that has identifiable parameters. This parameterized kinematic model must be complete, continuous and minimal. This work concerns to the implementation of techniques to optimize kinematic models for robot calibration through numerical optimization of the mathematical model. The optimized model is then used to compensate the model errors in an off-line programming system, enhancing significantly the robot kinematic model accuracy. The optimized model can be constructed in an easy and straight operation, through automatic assignment of joint coordinate systems and geometric parameter to the robot links. Assignment of coordinate systems by this technique avoids model singularities that usually spoil robot calibration results

    Kinematic calibration of Delta robot using distance measurements

    Get PDF
    This paper deals with kinematic calibration of the Delta robot using distance measurements. The work is mainly placed upon: (1) the error modeling with a goal to classify the source errors affecting both the compensatable and uncompensatable pose accuracy; (2) the full/partial source error identification using a set of distance measurements acquired by a laser tracker; and (3) design of a linearized compensator for real-time error compensation. Experimental results on a prototype show that positioning accuracy of the robot can significantly be improved by the proposed approach

    GECARO: A system for the GEometric CAlibration of RObots

    Get PDF
    International audienceThis paper presents a software package for the simulation and the practical calibration of the geometric parameters of robots. This system which is called GECARO, GEometric CAlibration of RObots, contains a large variety of methods to identify the geometric parameters of robots. GECARO is running on PC computers and developed using MATLAB; any general serial robot can be treated directly. The identifiable parameters are determined using a numerical method based on the QR decomposition, while the identification is carried out using linearized model which is solved iteratively using least squares criterion and by updating the observation matrix after each iteration

    One Camera in Hand for Kinematic Calibration of a Parallel Robot

    Full text link
    The main purpose of robot calibration is the correction of the possible errors in the robot parameters. This paper presents a method for a kinematic calibration of a parallel robot that is equipped with one camera in hand. In order to preserve the mechanical configuration of the robot, the camera is utilized to acquire incremental positions of the end effector from a spherical object that is fixed in the word reference frame. Incremental positions of the end effector are related to incremental positions of encoders of the motors of the robot. A kinematic model of the robot is modified in order to take into account possible errors of kinematic parameters. The solution of the model utilizes incremental positions of the resolvers and end effector, the new parameters minimizes errors in the kinematic equations. Spherical properties and intrinsic camera parameters are utilized to model sphere projection in order to improve spatial measurements. The robot system is designed to carry out tracking tasks and the calibration of the system is finally validated by means of integrating the errors of the visual controller

    An Improved Method for the Geometrical Calibration of Parallelogram-based Parallel Robots

    No full text
    International audienceThis paper presents an improved method for the geometrical calibration of parallel robots for which the structure is based upon some parallelogram mechanisms. Its originality is to identify the complete geometry of the mechanism's parallelograms, and to compensate the positioning error of the TCP (Tool Centre Point), due to the infinitesimal rotation of the traveling plate, induced by the parallelogram geometrical errors. The main difficulties are: (i) to derive the calibration model relative to all geometrical parameters, and (ii) to reuse the identified errors in a control model in order to compensate the positioning errors. In fact, the position relationship taking into account the full geometry of the parallelograms is difficult, not to say impossible, to derive in a close form; therefore a linear approximation of the model is proposed. The formulas necessary to run the method on a Delta robot are given. Then a simple mechanism is used to illustrate the benefits of this method compared to classical ones

    Calibration of Parallel Kinematic Machines: theory and applications

    Get PDF
    Introduction As already stated in the chapter addressing the calibration of serial manipulators, kinematic calibration is a procedure for the identification and the consequent compensation of the geometrical pose errors of a robot. This chapter extends the discussion to Parallel Manipulators (also called PKM Parallel Kinematic Machines). As described in the following (Section 2) this extension is not obvious but requires special care. Although for serial manipulators some procedures for the calibration based on automatic generation of a MCPC (Minimum Complete Parametrically Continuos) model exist, for PKMs only methodologies for individual manipulators have been proposed but a general strategy has not been presented since now. A few examples of the numerous approaches for the calibration of individual PKMs are proposed in (Parenti-Castelli & Di Gregorio, 1995), (Jokiel et al., 2000) for direct calibration and (Neugebauer et al., 1999), (Smollett, 1996) for indirect or self calibration techniques. This paper makes one significant step integrating available results with new ones and reordering them in simple rules that can be automatically applied to any PKM with general kinematic chains. In all the cases a MCPC kinematic model for geometrical calibration is automatically obtained. In Section 2 the main features of PKMs calibration is pointed out and the total number of the necessary parameters is determined; this is an original contribution. In Sections 3 and 4 two novel approaches for the generation of a MCPC model are described. Sections 5 and 6 are dedicated to the analysis of the singular cases and to the procedure for the elimination of the redundant parameters respectively; actual cases are discussed. Section 7 presents several examples of application of the two proposed procedures to many existing PKMs. Section 8 eventually draws the conclusions
    • …
    corecore