25 research outputs found

    Models for transcript quantification from RNA-Seq

    Full text link
    RNA-Seq is rapidly becoming the standard technology for transcriptome analysis. Fundamental to many of the applications of RNA-Seq is the quantification problem, which is the accurate measurement of relative transcript abundances from the sequenced reads. We focus on this problem, and review many recently published models that are used to estimate the relative abundances. In addition to describing the models and the different approaches to inference, we also explain how methods are related to each other. A key result is that we show how inference with many of the models results in identical estimates of relative abundances, even though model formulations can be very different. In fact, we are able to show how a single general model captures many of the elements of previously published methods. We also review the applications of RNA-Seq models to differential analysis, and explain why accurate relative transcript abundance estimates are crucial for downstream analyses

    Knowledge-Based Reconstruction of mRNA Transcripts with Short Sequencing Reads for Transcriptome Research

    Get PDF
    While most transcriptome analyses in high-throughput clinical studies focus on gene level expression, the existence of alternative isoforms of gene transcripts is a major source of the diversity in the biological functionalities of the human genome. It is, therefore, essential to annotate isoforms of gene transcripts for genome-wide transcriptome studies. Recently developed mRNA sequencing technology presents an unprecedented opportunity to discover new forms of transcripts, and at the same time brings bioinformatic challenges due to its short read length and incomplete coverage for the transcripts. In this work, we proposed a computational approach to reconstruct new mRNA transcripts from short sequencing reads with reference information of known transcripts in existing databases. The prior knowledge helped to define exon boundaries and fill in the transcript regions not covered by sequencing data. This approach was demonstrated using a deep sequencing data set of human muscle tissue with transcript annotations in RefSeq as prior knowledge. We identified 2,973 junctions, 7,471 exons, and 7,571 transcripts not previously annotated in RefSeq. 73% of these new transcripts found supports from UCSC Known Genes, Ensembl or EST transcript annotations. In addition, the reconstructed transcripts were much longer than those from de novo approaches that assume no prior knowledge. These previously un-annotated transcripts can be integrated with known transcript annotations to improve both the design of microarrays and the follow-up analyses of isoform expression. The overall results demonstrated that incorporating transcript annotations from genomic databases significantly helps the reconstruction of novel transcripts from short sequencing reads for transcriptome research

    IsoformEx: isoform level gene expression estimation using weighted non-negative least squares from mRNA-Seq data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>mRNA-Seq technology has revolutionized the field of transcriptomics for identification and quantification of gene transcripts not only at gene level but also at isoform level. Estimating the expression levels of transcript isoforms from mRNA-Seq data is a challenging problem due to the presence of constitutive exons.</p> <p>Results</p> <p>We propose a novel algorithm (IsoformEx) that employs weighted non-negative least squares estimation method to estimate the expression levels of transcript isoforms. Validations based on <it>in silico </it>simulation of mRNA-Seq and qRT-PCR experiments with real mRNA-Seq data showed that IsoformEx could accurately estimate transcript expression levels. In comparisons with published methods, the transcript expression levels estimated by IsoformEx showed higher correlation with known transcript expression levels from simulated mRNA-Seq data, and higher agreement with qRT-PCR measurements of specific transcripts for real mRNA-Seq data.</p> <p>Conclusions</p> <p>IsoformEx is a fast and accurate algorithm to estimate transcript expression levels and gene expression levels, which takes into account short exons and alternative exons with a weighting scheme. The software is available at <url>http://bioinformatics.wistar.upenn.edu/isoformex</url>.</p

    Statistical Tests for Detecting Differential RNA-Transcript Expression from Read Counts

    Get PDF
    As a fruit of the current revolution in sequencing technology, transcriptomes can now be analyzed at an unprecedented level of detail. These advances have been exploited for detecting differential expressed genes across biological samples and for quantifying the abundances of various RNA transcripts within one gene. However, explicit strategies for detecting the hidden differential abundances of RNA transcripts in biological samples have not been defined. In this work, we present two novel statistical tests to address this issue: a &#x27;gene structure sensitive&#x27; Poisson test for detecting differential expression when the transcript structure of the gene is known, and a kernel-based test called Maximum Mean Discrepancy when it is unknown. We analyzed the proposed approaches on simulated read data for two artificial samples as well as on factual reads generated by the Illumina Genome Analyzer for two _C. elegans_ samples. Our analysis shows that the Poisson test identifies genes with differential transcript expression considerably better that previously proposed RNA transcript quantification approaches for this task. The MMD test is able to detect a large fraction (75%) of such differential cases without the knowledge of the annotated transcripts. It is therefore well-suited to analyze RNA-Seq experiments when the genome annotations are incomplete or not available, where other approaches have to fail

    Estimation of alternative splicing isoform frequencies from RNA-Seq data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Massively parallel whole transcriptome sequencing, commonly referred as RNA-Seq, is quickly becoming the technology of choice for gene expression profiling. However, due to the short read length delivered by current sequencing technologies, estimation of expression levels for alternative splicing gene isoforms remains challenging.</p> <p>Results</p> <p>In this paper we present a novel expectation-maximization algorithm for inference of isoform- and gene-specific expression levels from RNA-Seq data. Our algorithm, referred to as IsoEM, is based on disambiguating information provided by the distribution of insert sizes generated during sequencing library preparation, and takes advantage of base quality scores, strand and read pairing information when available. The open source Java implementation of IsoEM is freely available at <url>http://dna.engr.uconn.edu/software/IsoEM/</url>.</p> <p>Conclusions</p> <p>Empirical experiments on both synthetic and real RNA-Seq datasets show that IsoEM has scalable running time and outperforms existing methods of isoform and gene expression level estimation. Simulation experiments confirm previous findings that, for a fixed sequencing cost, using reads longer than 25-36 bases does not necessarily lead to better accuracy for estimating expression levels of annotated isoforms and genes.</p

    Statistical Modeling of RNA-Seq Data

    Full text link
    Recently, ultra high-throughput sequencing of RNA (RNA-Seq) has been developed as an approach for analysis of gene expression. By obtaining tens or even hundreds of millions of reads of transcribed sequences, an RNA-Seq experiment can offer a comprehensive survey of the population of genes (transcripts) in any sample of interest. This paper introduces a statistical model for estimating isoform abundance from RNA-Seq data and is flexible enough to accommodate both single end and paired end RNA-Seq data and sampling bias along the length of the transcript. Based on the derivation of minimal sufficient statistics for the model, a computationally feasible implementation of the maximum likelihood estimator of the model is provided. Further, it is shown that using paired end RNA-Seq provides more accurate isoform abundance estimates than single end sequencing at fixed sequencing depth. Simulation studies are also given.Comment: Published in at http://dx.doi.org/10.1214/10-STS343 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Accurate Profiling of Microbial Communities from Massively Parallel Sequencing using Convex Optimization

    Full text link
    We describe the Microbial Community Reconstruction ({\bf MCR}) Problem, which is fundamental for microbiome analysis. In this problem, the goal is to reconstruct the identity and frequency of species comprising a microbial community, using short sequence reads from Massively Parallel Sequencing (MPS) data obtained for specified genomic regions. We formulate the problem mathematically as a convex optimization problem and provide sufficient conditions for identifiability, namely the ability to reconstruct species identity and frequency correctly when the data size (number of reads) grows to infinity. We discuss different metrics for assessing the quality of the reconstructed solution, including a novel phylogenetically-aware metric based on the Mahalanobis distance, and give upper-bounds on the reconstruction error for a finite number of reads under different metrics. We propose a scalable divide-and-conquer algorithm for the problem using convex optimization, which enables us to handle large problems (with 106\sim10^6 species). We show using numerical simulations that for realistic scenarios, where the microbial communities are sparse, our algorithm gives solutions with high accuracy, both in terms of obtaining accurate frequency, and in terms of species phylogenetic resolution.Comment: To appear in SPIRE 1

    Improvements to previous algorithms to predict gene structure and isoform concentrations using Affymetrix Exon arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exon arrays provide a way to measure the expression of different isoforms of genes in an organism. Most of the procedures to deal with these arrays are focused on gene expression or on exon expression. Although the only biological analytes that can be properly assigned a concentration are transcripts, there are very few algorithms that focus on them. The reason is that previously developed summarization methods do not work well if applied to transcripts. In addition, gene structure prediction, i.e., the correspondence between probes and novel isoforms, is a field which is still unexplored.</p> <p>Results</p> <p>We have modified and adapted a previous algorithm to take advantage of the special characteristics of the Affymetrix exon arrays. The structure and concentration of transcripts -some of them possibly unknown- in microarray experiments were predicted using this algorithm. Simulations showed that the suggested modifications improved both specificity (SP) and sensitivity (ST) of the predictions. The algorithm was also applied to different real datasets showing its effectiveness and the concordance with PCR validated results.</p> <p>Conclusions</p> <p>The proposed algorithm shows a substantial improvement in the performance over the previous version. This improvement is mainly due to the exploitation of the redundancy of the Affymetrix exon arrays. An R-Package of SPACE with the updated algorithms have been developed and is freely available.</p

    Algorithms for Transcriptome Quantification and Reconstruction from RNA-Seq Data

    Get PDF
    Massively parallel whole transcriptome sequencing and its ability to generate full transcriptome data at the single transcript level provides a powerful tool with multiple interrelated applications, including transcriptome reconstruction, gene/isoform expression estimation, also known as transcriptome quantification. As a result, whole transcriptome sequencing has become the technology of choice for performing transcriptome analysis, rapidly replacing array-based technologies. The most commonly used transcriptome sequencing protocol, referred to as RNA-Seq, generates short (single or paired) sequencing tags from the ends of randomly generated cDNA fragments. RNA-Seq protocol reduces the sequencing cost and significantly increases data throughput, but is computationally challenging to reconstruct full-length transcripts and accurately estimate their abundances across all cell types. We focus on two main problems in transcriptome data analysis, namely, transcriptome reconstruction and quantification. Transcriptome reconstruction, also referred to as novel isoform discovery, is the problem of reconstructing the transcript sequences from the sequencing data. Reconstruction can be done de novo or it can be assisted by existing genome and transcriptome annotations. Transcriptome quantification refers to the problem of estimating the expression level of each transcript. We present a genome-guided and annotation-guided transcriptome reconstruction methods as well as methods for transcript and gene expression level estimation. Empirical results on both synthetic and real RNA-seq datasets show that the proposed methods improve transcriptome quantification and reconstruction accuracy compared to previous methods
    corecore