976 research outputs found

    Combinatorial Characterization for Global Identifiability of Separable Networks with Partial Excitation and Measurement

    Full text link
    This work focuses on the generic identifiability of dynamical networks with partial excitation and measurement: a set of nodes are interconnected by transfer functions according to a known topology, some nodes are excited, some are measured, and only a part of the transfer functions are known. Our goal is to determine whether the unknown transfer functions can be generically recovered based on the input-output data collected from the excited and measured nodes. We introduce the notion of separable networks, for which global and so-called local identifiability are equivalent. A novel approach yields a necessary and sufficient combinatorial characterization for local identifiability for such graphs, in terms of existence of paths and conditions on their parity. Furthermore, this yields a necessary condition not only for separable networks, but for networks of any topology.Comment: 8 pages, 1 figure, article to appear in IEEE Conference on Decision and Control 202

    Tight Bounds for Maximal Identifiability of Failure Nodes in Boolean Network Tomography

    Full text link
    We study maximal identifiability, a measure recently introduced in Boolean Network Tomography to characterize networks' capability to localize failure nodes in end-to-end path measurements. We prove tight upper and lower bounds on the maximal identifiability of failure nodes for specific classes of network topologies, such as trees and dd-dimensional grids, in both directed and undirected cases. We prove that directed dd-dimensional grids with support nn have maximal identifiability dd using 2d(n1)+22d(n-1)+2 monitors; and in the undirected case we show that 2d2d monitors suffice to get identifiability of d1d-1. We then study identifiability under embeddings: we establish relations between maximal identifiability, embeddability and graph dimension when network topologies are model as DAGs. Our results suggest the design of networks over NN nodes with maximal identifiability Ω(logN)\Omega(\log N) using O(logN)O(\log N) monitors and a heuristic to boost maximal identifiability on a given network by simulating dd-dimensional grids. We provide positive evidence of this heuristic through data extracted by exact computation of maximal identifiability on examples of small real networks
    corecore