4,785 research outputs found

    Idempotent permutations

    Full text link
    Together with a characteristic function, idempotent permutations uniquely determine idempotent maps, as well as their linearly ordered arrangement simultaneously. Furthermore, in-place linear time transformations are possible between them. Hence, they may be important for succinct data structures, information storing, sorting and searching. In this study, their combinatorial interpretation is given and their application on sorting is examined. Given an array of n integer keys each in [1,n], if it is allowed to modify the keys in the range [-n,n], idempotent permutations make it possible to obtain linearly ordered arrangement of the keys in O(n) time using only 4log(n) bits, setting the theoretical lower bound of time and space complexity of sorting. If it is not allowed to modify the keys out of the range [1,n], then n+4log(n) bits are required where n of them is used to tag some of the keys.Comment: 32 page

    P-partitions and a multi-parameter Klyachko idempotent

    Get PDF
    Because they play a role in our understanding of the symmetric group algebra, Lie idempotents have received considerable attention. The Klyachko idempotent has attracted interest from combinatorialists, partly because its definition involves the major index of permutations. For the symmetric group S_n, we look at the symmetric group algebra with coefficients from the field of rational functions in n variables q_1,..., q_n. In this setting, we can define an n-parameter generalization of the Klyachko idempotent, and we show it is a Lie idempotent in the appropriate sense. Somewhat surprisingly, our proof that it is a Lie element emerges from Stanley's theory of P-partitions.Comment: 16 pages, 1 figure. Final version: incorporates suggestions of the referee, no changes to the result

    Self-adjoint symmetry operators connected with the magnetic Heisenberg ring

    Full text link
    We consider symmetry operators a from the group ring C[S_N] which act on the Hilbert space H of the 1D spin-1/2 Heisenberg magnetic ring with N sites. We investigate such symmetry operators a which are self-adjoint (in a sence defined in the paper) and which yield consequently observables of the Heisenberg model. We prove the following results: (i) One can construct a self-adjoint idempotent symmetry operator from every irreducible character of every subgroup of S_N. This leads to a big manifold of observables. In particular every commutation symmetry yields such an idempotent. (ii) The set of all generating idempotents of a minimal right ideal R of C[S_N] contains one and only one idempotent which ist self-adjoint. (iii) Every self-adjoint idempotent e can be decomposed into primitive idempotents e = f_1 + ... + f_k which are also self-adjoint and pairwise orthogonal. We give a computer algorithm for the calculation of such decompositions. Furthermore we present 3 additional algorithms which are helpful for the calculation of self-adjoint operators by means of discrete Fourier transforms of S_N. In our investigations we use computer calculations by means of our Mathematica packages PERMS and HRing.Comment: 13 page
    • …
    corecore