25,588 research outputs found

    Ideal Basis in Constructions Defined by Directed Graphs

    Full text link
    The present article continues the investigation of visible ideal bases in constructions defined using directed graphs. This notion is motivated by its applications for the design of classication systems. Our main theorem establishes that, for every balanced digraph and each idempotent semiring with identity element, the incidence semiring of the digraph has a convenient visible ideal basis. It also shows that the elements of the basis can always be used to generate ideals with the largest possible weight among the weights of all ideals in the incidence semiring

    Classification theorems for the C*-algebras of graphs with sinks

    Get PDF
    We consider graphs E which have been obtained by adding one or more sinks to a fixed directed graph G. We classify the C*-algebra of E up to a very strong equivalence relation, which insists, loosely speaking, that C*(G) is kept fixed. The main invariants are vectors W_E : G^0 -> N which describe how the sinks are attached to G; more precisely, the invariants are the classes of the W_E in the cokernel of the map A-I, where A is the adjacency matrix of the graph G.Comment: 16 pages, uses XY-pi

    Wheeled PROPs, graph complexes and the master equation

    Get PDF
    We introduce and study wheeled PROPs, an extension of the theory of PROPs which can treat traces and, in particular, solutions to the master equations which involve divergence operators. We construct a dg free wheeled PROP whose representations are in one-to-one correspondence with formal germs of SP-manifolds, key geometric objects in the theory of Batalin-Vilkovisky quantization. We also construct minimal wheeled resolutions of classical operads Com and Ass as rather non-obvious extensions of Com_infty and Ass_infty, involving, e.g., a mysterious mixture of associahedra with cyclohedra. Finally, we apply the above results to a computation of cohomology of a directed version of Kontsevich's complex of ribbon graphs.Comment: LaTeX2e, 63 pages; Theorem 4.2.5 on bar-cobar construction is strengthene

    Three Hopf algebras from number theory, physics & topology, and their common background II: general categorical formulation

    Get PDF
    We consider three a priori totally different setups for Hopf algebras from number theory, mathematical physics and algebraic topology. These are the Hopf algebra of Goncharov for multiple zeta values, that of Connes-Kreimer for renormalization, and a Hopf algebra constructed by Baues to study double loop spaces. We show that these examples can be successively unified by considering simplicial objects, co-operads with multiplication and Feynman categories at the ultimate level. These considerations open the door to new constructions and reinterpretations of known constructions in a large common framework which is presented step-by-step with examples throughout. In this second part of two papers, we give the general categorical formulation

    Wheeled pro(p)file of Batalin-Vilkovisky formalism

    Get PDF
    Using technique of wheeled props we establish a correspondence between the homotopy theory of unimodular Lie 1-bialgebras and the famous Batalin-Vilkovisky formalism. Solutions of the so called quantum master equation satisfying certain boundary conditions are proven to be in 1-1 correspondence with representations of a wheeled dg prop which, on the one hand, is isomorphic to the cobar construction of the prop of unimodular Lie 1-bialgebras and, on the other hand, is quasi-isomorphic to the dg wheeled prop of unimodular Poisson structures. These results allow us to apply properadic methods for computing formulae for a homotopy transfer of a unimodular Lie 1-bialgebra structure on an arbitrary complex to the associated quantum master function on its cohomology. It is proven that in the category of quantum BV manifolds associated with the homotopy theory of unimodular Lie 1-bialgebras quasi-isomorphisms are equivalence relations. It is shown that Losev-Mnev's BF theory for unimodular Lie algebras can be naturally extended to the case of unimodular Lie 1-bialgebras (and, eventually, to the case of unimodular Poisson structures). Using a finite-dimensional version of the Batalin-Vilkovisky quantization formalism it is rigorously proven that the Feynman integrals computing the effective action of this new BF theory describe precisely homotopy transfer formulae obtained within the wheeled properadic approach to the quantum master equation. Quantum corrections (which are present in our BF model to all orders of the Planck constant) correspond precisely to what are often called "higher Massey products" in the homological algebra.Comment: 42 pages. The journal versio

    Crystal constructions in Number Theory

    Full text link
    Weyl group multiple Dirichlet series and metaplectic Whittaker functions can be described in terms of crystal graphs. We present crystals as parameterized by Littelmann patterns and we give a survey of purely combinatorial constructions of prime power coefficients of Weyl group multiple Dirichlet series and metaplectic Whittaker functions using the language of crystal graphs. We explore how the branching structure of crystals manifests in these constructions, and how it allows access to some intricate objects in number theory and related open questions using tools of algebraic combinatorics
    • …
    corecore