16 research outputs found

    Cuboids, a class of clutters

    Get PDF
    The τ=2 Conjecture, the Replication Conjecture and the f-Flowing Conjecture, and the classification of binary matroids with the sums of circuits property are foundational to Clutter Theory and have far-reaching consequences in Combinatorial Optimization, Matroid Theory and Graph Theory. We prove that these conjectures and result can equivalently be formulated in terms of cuboids, which form a special class of clutters. Cuboids are used as means to (a) manifest the geometry behind primal integrality and dual integrality of set covering linear programs, and (b) reveal a geometric rift between these two properties, in turn explaining why primal integrality does not imply dual integrality for set covering linear programs. Along the way, we see that the geometry supports the τ=2 Conjecture. Studying the geometry also leads to over 700 new ideal minimally non-packing clutters over at most 14 elements, a surprising revelation as there was once thought to be only one such clutter

    Ideal Clutters

    Get PDF
    Let E be a finite set of elements, and let C be a family of subsets of E called members. We say that C is a clutter over ground set E if no member is contained in another. The clutter C is ideal if every extreme point of the polyhedron { x>=0 : x(C) >= 1 for every member C } is integral. Ideal clutters are central objects in Combinatorial Optimization, and they have deep connections to several other areas. To integer programmers, they are the underlying structure of set covering integer programs that are easily solvable. To graph theorists, they are manifest in the famous theorems of Edmonds and Johnson on T-joins, of Lucchesi and Younger on dijoins, and of Guenin on the characterization of weakly bipartite graphs; not to mention they are also the set covering analogue of perfect graphs. To matroid theorists, they are abstractions of Seymour’s sums of circuits property as well as his f-flowing property. And finally, to combinatorial optimizers, ideal clutters host many minimax theorems and are extensions of totally unimodular and balanced matrices. This thesis embarks on a mission to develop the theory of general ideal clutters. In the first half of the thesis, we introduce and/or study tools for finding deltas, extended odd holes and their blockers as minors; identically self-blocking clutters; exclusive, coexclusive and opposite pairs; ideal minimally non-packing clutters and the τ = 2 Conjecture; cuboids; cube-idealness; strict polarity; resistance; the sums of circuits property; and minimally non-ideal binary clutters and the f-Flowing Conjecture. While the first half of the thesis includes many broad and high-level contributions that are accessible to a non-expert reader, the second half contains three deep and technical contributions, namely, a character- ization of an infinite family of ideal minimally non-packing clutters, a structure theorem for ±1-resistant sets, and a characterization of the minimally non-ideal binary clutters with a member of cardinality three. In addition to developing the theory of ideal clutters, a main goal of the thesis is to trigger further research on ideal clutters. We hope to have achieved this by introducing a handful of new and exciting conjectures on ideal clutters

    Combinatorial Optimization

    Get PDF
    Combinatorial Optimization is an active research area that developed from the rich interaction among many mathematical areas, including combinatorics, graph theory, geometry, optimization, probability, theoretical computer science, and many others. It combines algorithmic and complexity analysis with a mature mathematical foundation and it yields both basic research and applications in manifold areas such as, for example, communications, economics, traffic, network design, VLSI, scheduling, production, computational biology, to name just a few. Through strong inner ties to other mathematical fields it has been contributing to and benefiting from areas such as, for example, discrete and convex geometry, convex and nonlinear optimization, algebraic and topological methods, geometry of numbers, matroids and combinatorics, and mathematical programming. Moreover, with respect to applications and algorithmic complexity, Combinatorial Optimization is an essential link between mathematics, computer science and modern applications in data science, economics, and industry

    Graph Theory

    Get PDF
    [no abstract available

    Single Commodity Flow Algorithms for Lifts of Graphic and Cographic Matroids

    Get PDF
    Consider a binary matroid M given by its matrix representation. We show that if M is a lift of a graphic or a cographic matroid, then in polynomial time we can either solve the single commodity flow problem for M or find an obstruction for which the Max-Flow Min-Cut relation does not hold. The key tool is an algorithmic version of Lehman's Theorem for the set covering polyhedron

    On packing dijoins in digraphs and weighted digraphs

    Full text link
    In this paper, we make some progress in addressing Woodall's Conjecture, and the refuted Edmonds-Giles Conjecture on packing dijoins in unweighted and weighted digraphs. Let D=(V,A)D=(V,A) be a digraph, and let wZ0Aw\in \mathbb{Z}^A_{\geq 0}. Suppose every dicut has weight at least τ\tau, for some integer τ2\tau\geq 2. Let ρ(τ,D,w):=1τvVmv\rho(\tau,D,w):=\frac{1}{\tau}\sum_{v\in V} m_v, where each mvm_v is the integer in {0,1,,τ1}\{0,1,\ldots,\tau-1\} equal to w(δ+(v))w(δ(v))w(\delta^+(v))-w(\delta^-(v)) mod τ\tau. In this paper, we prove the following results, amongst others: (1) If w=1w={\bf 1}, then AA can be partitioned into a dijoin and a (τ1)(\tau-1)-dijoin. (2) If ρ(τ,D,w){0,1}\rho(\tau,D,w)\in \{0,1\}, then there is an equitable ww-weighted packing of dijoins of size τ\tau. (3) If ρ(τ,D,w)=2\rho(\tau,D,w)= 2, then there is a ww-weighted packing of dijoins of size τ\tau. (4) If w=1w={\bf 1}, τ=3\tau=3, and ρ(τ,D,w)=3\rho(\tau,D,w)=3, then AA can be partitioned into three dijoins. Each result is best possible: (1) and (4) do not hold for general ww, (2) does not hold for ρ(τ,D,w)=2\rho(\tau,D,w)=2 even if w=1w={\bf 1}, and (3) does not hold for ρ(τ,D,w)=3\rho(\tau,D,w)=3. The results are rendered possible by a \emph{Decompose, Lift, and Reduce procedure}, which turns (D,w)(D,w) into a set of \emph{sink-regular weighted (τ,τ+1)(\tau,\tau+1)-bipartite digraphs}, each of which is a weighted digraph where every vertex is a sink of weighted degree τ\tau or a source of weighted degree τ,τ+1\tau,\tau+1, and every dicut has weight at least τ\tau. Our results give rise to a number of approaches for resolving Woodall's Conjecture, fixing the refuted Edmonds-Giles Conjecture, and the τ=2\tau=2 Conjecture for the clutter of minimal dijoins. They also show an intriguing connection to Barnette's Conjecture.Comment: 71 page

    Integrality, complexity and colourings in polyhedral combinatorics

    Get PDF

    Combinatorial Optimization

    Get PDF
    [no abstract available

    The Cycling Property for the Clutter of Odd st-Walks

    Get PDF
    A binary clutter is cycling if its packing and covering linear program have integral optimal solutions for all Eulerian edge capacities. We prove that the clutter of odd st- walks of a signed graph is cycling if and only if it does not contain as a minor the clutter of odd circuits of K5 nor the clutter of lines of the Fano matroid. Corollaries of this result include, of many, the characterization for weakly bipartite signed graphs, packing two- commodity paths, packing T-joins with small |T|, a new result on covering odd circuits of a signed graph, as well as a new result on covering odd circuits and odd T-joins of a signed graft

    Combinatorial Optimization

    Get PDF
    Combinatorial Optimization is a very active field that benefits from bringing together ideas from different areas, e.g., graph theory and combinatorics, matroids and submodularity, connectivity and network flows, approximation algorithms and mathematical programming, discrete and computational geometry, discrete and continuous problems, algebraic and geometric methods, and applications. We continued the long tradition of triannual Oberwolfach workshops, bringing together the best researchers from the above areas, discovering new connections, and establishing new and deepening existing international collaborations
    corecore