363 research outputs found

    Design and Implementation of Intelligent Traffic-Management System for Smart Cities using Roaming Agent and Deep Neural Network (RAD2N)

    Get PDF
    In metropolitan areas, the exponential growth in quantity of vehicles has instigated gridlock, pollution, and delays in the transportation of freight. IoT is the modern revolution which pushes the world towards intelligent management systems and automated procedures. This makes a significant contribution to automation and intelligent societies. Traffic regulation and effective congestion management assist conserve many priceless resources. In order to recognize, collect and send data, autonomous vehicles are furnished with IoT powered Intelligent Traffic Management System (ITMS) having a set of sensors.  Moreover, machine learning (ML) algorithms can also be employed to enhance the transportation system.  Traffic jams, delays, and a high death rate are the results of the problems that the current transport management systems face.  In this paper, an active traffic control for VANET is proposed which merges Roaming Agents (RA) with deep neural networks (DNN). The effectiveness of the DNN with RA (RAD2N) routing method in VANETs is evaluated experimentally and compared with the traditional ML and other DL routing algorithms. Several traffic congestion indicators, including delay, packet delivery ratio (PDR) and throughput are used to validate RAD2N. The outcomes demonstrate that the proposed approach delivers lower latency and energy consumption

    A Comprehensive and Effective Framework for Traffic Congestion Problem Based on the Integration of IoT and Data Analytics

    Get PDF
    This research was funded by the Deanship of Scientific Research, Islamic University of Madinah, Saudi Arabia, under Tamayuz research grant number 2/710.Traffic congestion is still a challenge faced by most countries of the world. However, it can be solved most effectively by integrating modern technologies such as Internet of Things (IoT), fog computing, cloud computing, data analytics, and so on, into a framework that exploits the strengths of these technologies to address specific problems faced in traffic management. Unfortunately, no such framework that addresses the reliability, flexibility, and efficiency issues of smart-traffic management exists. Therefore, this paper proposes a comprehensive framework to achieve a reliable, flexible, and efficient solution for the problem of traffic congestion. The proposed framework has four layers. The first layer, namely, the sensing layer, uses multiple data sources to ensure a reliable and accurate measurement of the traffic status of the streets, and forwards these data to the second layer. The second layer, namely, the fog layer, consumes these data to make efficient decisions and also forwards them to the third layer. The third layer, the cloud layer, permanently stores these data for analytics and knowledge discoveries. Finally, the fourth layer, the services layer, provides assistant services for traffic management. We also discuss the functional model of the framework and the technologies that can be used at each level of the model. We propose a smart-traffic light algorithm at level 1 for the efficient management of congestion at intersections, tweet-classification and image-processing algorithms at level 2 for reliable and accurate decision-making, and support services at level 4 of the functional model. We also evaluated the proposed smart-traffic light algorithm for its efficiency, and the tweet classification and image-processing algorithms for their accuracy.Deanship of Scientific Research, Islamic University of Madinah, Saudi Arabia 2/71

    Traffic Flow Forecast based on Vehicle Count

    Get PDF
    Real-time traffic predictions have now become a time-being need for efficient traffic management due to the exponentially increasing traffic congestion In this paper a more pragmatic traffic management system is introduced to address traffic congestion especially in countries such as Sri Lanka where there is no proper traffic monitoring database Here the real-time traffic monitoring is performed using TFmini Plus light detection and ranging LiDAR sensor and vehicle count for next five minutes will be predicted by feeding consecutively collected data into the LSTM neural network More than ten separate prediction models were trained varying both window size and the volume of input data delivered to train the models Since the accuracy results of all prediction models were above 70 it demonstrates that this system can produce accurate predictions even if it is trained using less input data collection Similarly the sensor accuracy test also resulted in 89 7 accurac

    COLTRANE: ConvolutiOnaL TRAjectory NEtwork for Deep Map Inference

    Full text link
    The process of automatic generation of a road map from GPS trajectories, called map inference, remains a challenging task to perform on a geospatial data from a variety of domains as the majority of existing studies focus on road maps in cities. Inherently, existing algorithms are not guaranteed to work on unusual geospatial sites, such as an airport tarmac, pedestrianized paths and shortcuts, or animal migration routes, etc. Moreover, deep learning has not been explored well enough for such tasks. This paper introduces COLTRANE, ConvolutiOnaL TRAjectory NEtwork, a novel deep map inference framework which operates on GPS trajectories collected in various environments. This framework includes an Iterated Trajectory Mean Shift (ITMS) module to localize road centerlines, which copes with noisy GPS data points. Convolutional Neural Network trained on our novel trajectory descriptor is then introduced into our framework to detect and accurately classify junctions for refinement of the road maps. COLTRANE yields up to 37% improvement in F1 scores over existing methods on two distinct real-world datasets: city roads and airport tarmac.Comment: BuildSys 201

    Computational Intelligence in Highway Management: A Review

    Get PDF
    Highway management systems are used to improve safety and driving comfort on highways by using control strategies and providing information and warnings to drivers. They use several strategies starting from speed and lane management, through incident detection and warning systems, ramp metering, weather information up to, for example, informing drivers about alternative roads. This paper provides a review of the existing approaches to highway management systems, particularly speed harmonization and ramp metering. It is focused only on modern and advanced approaches, such as soft computing, multi-agent methods and their interconnection. Its objective is to provide guidance in the wide field of highway management and to point out the most relevant recent activities which demonstrate that development in the field of highway management is still important and that the existing research exhibits potential for further enhancement
    • ā€¦
    corecore