190 research outputs found

    Big Data for Traffic Monitoring and Management

    Get PDF
    The last two decades witnessed tremendous advances in the Information and Com- munications Technologies. Beside improvements in computational power and storage capacity, communication networks carry nowadays an amount of data which was not envisaged only few years ago. Together with their pervasiveness, network complexity increased at the same pace, leaving operators and researchers with few instruments to understand what happens in the networks, and, on the global scale, on the Internet. Fortunately, recent advances in data science and machine learning come to the res- cue of network analysts, and allow analyses with a level of complexity and spatial/tem- poral scope not possible only 10 years ago. In my thesis, I take the perspective of an In- ternet Service Provider (ISP), and illustrate challenges and possibilities of analyzing the traffic coming from modern operational networks. I make use of big data and machine learning algorithms, and apply them to datasets coming from passive measurements of ISP and University Campus networks. The marriage between data science and network measurements is complicated by the complexity of machine learning algorithms, and by the intrinsic multi-dimensionality and variability of this kind of data. As such, my work proposes and evaluates novel techniques, inspired from popular machine learning approaches, but carefully tailored to operate with network traffic. In this thesis, I first provide a thorough characterization of the Internet traffic from 2013 to 2018. I show the most important trends in the composition of traffic and users’ habits across the last 5 years, and describe how the network infrastructure of Internet big players changed in order to support faster and larger traffic. Then, I show the chal- lenges in classifying network traffic, with particular attention to encryption and to the convergence of Internet around few big players. To overcome the limitations of classical approaches, I propose novel algorithms for traffic classification and management lever- aging machine learning techniques, and, in particular, big data approaches. Exploiting temporal correlation among network events, and benefiting from large datasets of op- erational traffic, my algorithms learn common traffic patterns of web services, and use them for (i) traffic classification and (ii) fine-grained traffic management. My proposals are always validated in experimental environments, and, then, deployed in real opera- tional networks, from which I report the most interesting findings I obtain. I also focus on the Quality of Experience (QoE) of web users, as their satisfaction represents the final objective of computer networks. Again, I show that using big data approaches, the network can achieve visibility on the quality of web browsing of users. In general, the algorithms I propose help ISPs have a detailed view of traffic that flows in their network, allowing fine-grained traffic classification and management, and real-time monitoring of users QoE

    Beyond Innovation and Competition: The Need for Qualified Transparency in Internet Intermediaries

    Get PDF
    Internet service providers and search engines have mapped the web, accelerated e-commerce, and empowered new communities. They also pose new challenges for law. Individuals are rapidly losing the ability to affect their own image on the web - or even to know what data are presented about them. When web users attempt to find information or entertainment, they have little assurance that a carrier or search engine is not biasing the presentation of results in accordance with its own commercial interests. Technology’s impact on privacy and democratic culture needs to be at the center of internet policy-making. Yet before they promulgate substantive rules, key administrators must genuinely understand new developments. While the Federal Trade Commission and the Federal Communications Commission in the U.S. have articulated principles of editorial integrity for search engines and net neutrality for carriers, they have not engaged in the monitoring necessary to enforce these guidelines. This article proposes institutions for “qualified transparency” within each Commission to fill this regulatory gap. Qualified transparency respects legitimate needs for confidentiality while promoting individuals’ and companies\u27 capacity to understand how their reputations - and the online world generally - are shaped by dominant intermediaries

    Bringing an End to the Wiretap Act as Data Privacy Legislation

    Get PDF

    A Brave New World: Studies on the Deployment and Security of the Emerging IPv6 Internet.

    Full text link
    Recent IPv4 address exhaustion events are ushering in a new era of rapid transition to the next generation Internet protocol---IPv6. Via Internet-scale experiments and data analysis, this dissertation characterizes the adoption and security of the emerging IPv6 network. The work includes three studies, each the largest of its kind, examining various facets of the new network protocol's deployment, routing maturity, and security. The first study provides an analysis of ten years of IPv6 deployment data, including quantifying twelve metrics across ten global-scale datasets, and affording a holistic understanding of the state and recent progress of the IPv6 transition. Based on cross-dataset analysis of relative global adoption rates and across features of the protocol, we find evidence of a marked shift in the pace and nature of adoption in recent years and observe that higher-level metrics of adoption lag lower-level metrics. Next, a network telescope study covering the IPv6 address space of the majority of allocated networks provides insight into the early state of IPv6 routing. Our analyses suggest that routing of average IPv6 prefixes is less stable than that of IPv4. This instability is responsible for the majority of the captured misdirected IPv6 traffic. Observed dark (unallocated destination) IPv6 traffic shows substantial differences from the unwanted traffic seen in IPv4---in both character and scale. Finally, a third study examines the state of IPv6 network security policy. We tested a sample of 25 thousand routers and 520 thousand servers against sets of TCP and UDP ports commonly targeted by attackers. We found systemic discrepancies between intended security policy---as codified in IPv4---and deployed IPv6 policy. Such lapses in ensuring that the IPv6 network is properly managed and secured are leaving thousands of important devices more vulnerable to attack than before IPv6 was enabled. Taken together, findings from our three studies suggest that IPv6 has reached a level and pace of adoption, and shows patterns of use, that indicates serious production employment of the protocol on a broad scale. However, weaker IPv6 routing and security are evident, and these are leaving early dual-stack networks less robust than the IPv4 networks they augment.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120689/1/jczyz_1.pd
    • …
    corecore