8 research outputs found

    Abstracting Application Development for Resource Constrained Wireless Sensor Networks

    Get PDF
    Ubiquitous computing is a concept whereby computing is distributed across smart objects surrounding users, creating ambient intelligence. Ubiquitous applications use technologies such as the Internet, sensors, actuators, embedded computers, wireless communication, and new user interfaces. The Internet-of-Things (IoT) is one of the key concepts in the realization of ubiquitous computing, whereby smart objects communicate with each other and the Internet. Further, Wireless Sensor Networks (WSNs) are a sub-group of IoT technologies that consist of geographically distributed devices or nodes, capable of sensing and actuating the environment.WSNs typically contain tens to thousands of nodes that organize and operate autonomously to perform application-dependent sensing and sensor data processing tasks. The projected applications require nodes to be small in physical size and low-cost, and have a long lifetime with limited energy resources, while performing complex computing and communications tasks. As a result, WSNs are complex distributed systems that are constrained by communications, computing and energy resources. WSN functionality is dynamic according to the environment and application requirements. Dynamic multitasking, task distribution, task injection, and software updates are required in ļ¬eld experiments for possibly thousands of nodes functioning in harsh environments.The development of WSN application software requires the abstraction of computing, communication, data access, and heterogeneous sensor data sources to reduce the complexities. Abstractions enable the faster development of new applications with a better reuse of existing software, as applications are composed of high-level tasks that use the services provided by the devices to execute the application logic.The main research question of this thesis is: What abstractions are needed for application development for resource constrained WSNs? This thesis models WSN abstractions with three levels that build on top of each other: 1) node abstraction, 2) network abstraction, and 3) infrastructure abstraction. The node abstraction hides the details in the use of the sensing, communication, and processing hardware. The network abstraction speciļ¬es methods of discovering and accessing services, and distributing processing in the network. The infrastructure abstraction uniļ¬es different sensing technologies and infrastructure computing platforms.As a contribution, this thesis presents the abstraction model with a review of each abstraction level. Several designs for each of the levels are tested and veriļ¬ed with proofs of concept and analyses of ļ¬eld experiments. The resulting designs consist of an operating system kernel, a software update method, a data uniļ¬cation interface, and all abstraction levels combining abstraction called an embedded cloud.The presented operating system kernel has a scalable overhead and provides a programming approach similar to a desktop computer operating system with threads and processes. An over-the-air update method combines low overhead and robust software updating with application task dissemination. The data uniļ¬cation interface homogenizes the access to the data of heterogeneous sensor networks. A uniļ¬cation model is used for various use cases by mapping everything as measurements. The embedded cloud allows resource constrained WSNs to share services and data, and expand resources with other technologies. The embedded cloud allows the distributed processing of applications according to the available services. The applications are implemented as processes using a hardware independent description language that can be executed on resource constrained WSNs. The lessons of practical ļ¬eld experimenting are analyzed to study the importance of the abstractions. Software complexities encountered in the ļ¬eld experiments highlight the need for suitable abstractions.The results of this thesis are tested using proof of concept implementations on real WSN hardware which is constrained by computing power in the order of a few MIPS, memory sizes of a few kilobytes, and small sized batteries. The results will remain usable in the future, as the vast amount, tight integration, and low-cost of future IoT devices require the combination of complex computation with resource constrained platforms

    Abstracting Application Development for Resource Constrained Wireless Sensor Networks

    Get PDF
    Ubiquitous computing is a concept whereby computing is distributed across smart objects surrounding users, creating ambient intelligence. Ubiquitous applications use technologies such as the Internet, sensors, actuators, embedded computers, wireless communication, and new user interfaces. The Internet-of-Things (IoT) is one of the key concepts in the realization of ubiquitous computing, whereby smart objects communicate with each other and the Internet. Further, Wireless Sensor Networks (WSNs) are a sub-group of IoT technologies that consist of geographically distributed devices or nodes, capable of sensing and actuating the environment.WSNs typically contain tens to thousands of nodes that organize and operate autonomously to perform application-dependent sensing and sensor data processing tasks. The projected applications require nodes to be small in physical size and low-cost, and have a long lifetime with limited energy resources, while performing complex computing and communications tasks. As a result, WSNs are complex distributed systems that are constrained by communications, computing and energy resources. WSN functionality is dynamic according to the environment and application requirements. Dynamic multitasking, task distribution, task injection, and software updates are required in ļ¬eld experiments for possibly thousands of nodes functioning in harsh environments.The development of WSN application software requires the abstraction of computing, communication, data access, and heterogeneous sensor data sources to reduce the complexities. Abstractions enable the faster development of new applications with a better reuse of existing software, as applications are composed of high-level tasks that use the services provided by the devices to execute the application logic.The main research question of this thesis is: What abstractions are needed for application development for resource constrained WSNs? This thesis models WSN abstractions with three levels that build on top of each other: 1) node abstraction, 2) network abstraction, and 3) infrastructure abstraction. The node abstraction hides the details in the use of the sensing, communication, and processing hardware. The network abstraction speciļ¬es methods of discovering and accessing services, and distributing processing in the network. The infrastructure abstraction uniļ¬es different sensing technologies and infrastructure computing platforms.As a contribution, this thesis presents the abstraction model with a review of each abstraction level. Several designs for each of the levels are tested and veriļ¬ed with proofs of concept and analyses of ļ¬eld experiments. The resulting designs consist of an operating system kernel, a software update method, a data uniļ¬cation interface, and all abstraction levels combining abstraction called an embedded cloud.The presented operating system kernel has a scalable overhead and provides a programming approach similar to a desktop computer operating system with threads and processes. An over-the-air update method combines low overhead and robust software updating with application task dissemination. The data uniļ¬cation interface homogenizes the access to the data of heterogeneous sensor networks. A uniļ¬cation model is used for various use cases by mapping everything as measurements. The embedded cloud allows resource constrained WSNs to share services and data, and expand resources with other technologies. The embedded cloud allows the distributed processing of applications according to the available services. The applications are implemented as processes using a hardware independent description language that can be executed on resource constrained WSNs. The lessons of practical ļ¬eld experimenting are analyzed to study the importance of the abstractions. Software complexities encountered in the ļ¬eld experiments highlight the need for suitable abstractions.The results of this thesis are tested using proof of concept implementations on real WSN hardware which is constrained by computing power in the order of a few MIPS, memory sizes of a few kilobytes, and small sized batteries. The results will remain usable in the future, as the vast amount, tight integration, and low-cost of future IoT devices require the combination of complex computation with resource constrained platforms

    Bioinspired metaheuristic algorithms for global optimization

    Get PDF
    This paper presents concise comparison study of newly developed bioinspired algorithms for global optimization problems. Three different metaheuristic techniques, namely Accelerated Particle Swarm Optimization (APSO), Firefly Algorithm (FA), and Grey Wolf Optimizer (GWO) are investigated and implemented in Matlab environment. These methods are compared on four unimodal and multimodal nonlinear functions in order to find global optimum values. Computational results indicate that GWO outperforms other intelligent techniques, and that all aforementioned algorithms can be successfully used for optimization of continuous functions

    Experimental Evaluation of Growing and Pruning Hyper Basis Function Neural Networks Trained with Extended Information Filter

    Get PDF
    In this paper we test Extended Information Filter (EIF) for sequential training of Hyper Basis Function Neural Networks with growing and pruning ability (HBF-GP). The HBF neuron allows different scaling of input dimensions to provide better generalization property when dealing with complex nonlinear problems in engineering practice. The main intuition behind HBF is in generalization of Gaussian type of neuron that applies Mahalanobis-like distance as a distance metrics between input training sample and prototype vector. We exploit concept of neuronā€™s significance and allow growing and pruning of HBF neurons during sequential learning process. From engineerā€™s perspective, EIF is attractive for training of neural networks because it allows a designer to have scarce initial knowledge of the system/problem. Extensive experimental study shows that HBF neural network trained with EIF achieves same prediction error and compactness of network topology when compared to EKF, but without the need to know initial state uncertainty, which is its main advantage over EKF

    African Handbook of Climate Change Adaptation

    Get PDF
    This open access book discusses current thinking and presents the main issues and challenges associated with climate change in Africa. It introduces evidences from studies and projects which show how climate change adaptation is being - and may continue to be successfully implemented in African countries. Thanks to its scope and wide range of themes surrounding climate change, the ambition is that this book will be a lead publication on the topic, which may be regularly updated and hence capture further works. Climate change is a major global challenge. However, some geographical regions are more severly affected than others. One of these regions is the African continent. Due to a combination of unfavourable socio-economic and meteorological conditions, African countries are particularly vulnerable to climate change and its impacts. The recently released IPCC special report "Global Warming of 1.5Āŗ C" outlines the fact that keeping global warming by the level of 1.5Āŗ C is possible, but also suggested that an increase by 2Āŗ C could lead to crises with crops (agriculture fed by rain could drop by 50% in some African countries by 2020) and livestock production, could damage water supplies and pose an additonal threat to coastal areas. The 5th Assessment Report produced by IPCC predicts that wheat may disappear from Africa by 2080, and that maizeā€” a stapleā€”will fall significantly in southern Africa. Also, arid and semi-arid lands are likely to increase by up to 8%, with severe ramifications for livelihoods, poverty eradication and meeting the SDGs. Pursuing appropriate adaptation strategies is thus vital, in order to address the current and future challenges posed by a changing climate. It is against this background that the "African Handbook of Climate Change Adaptation" is being published. It contains papers prepared by scholars, representatives from social movements, practitioners and members of governmental agencies, undertaking research and/or executing climate change projects in Africa, and working with communities across the African continent. Encompassing over 100 contribtions from across Africa, it is the most comprehensive publication on climate change adaptation in Africa ever produced

    Triple Helix as a Strategic Tool to Fast-Track Climate Change Adaptation in Rural Kenya: Case Study of Marsabit County

    Get PDF
    AbstractThe lack of affordable, clean, and reliable energy in Africa's rural areas forces people to resort to poor quality energy source, which is detrimental to the people's health and prevents the economic development of communities. Moreover, access to safe water and food security are concerns closely linked to health issues and children malnourishment. Recent climate change due to global warming has worsened the already critical situation.Electricity is well known to be an enabler of development as it allows the use of modern devices thus enabling the development of not only income-generating activities but also water pumping and food processing and conservation that can promote socioeconomic growth. However, all of this is difficult to achieve due to the lack of investors, local skills, awareness by the community, and often also government regulations.All the above mentioned barriers to the uptake of electricity in rural Kenya could be solved by the coordinated effort of government, private sector, and academia, also referred to as Triple Helix, in which each entity may partially take the other's role. This chapter discretizes the above and shows how a specific county (Marsabit) has benefited from this triple intervention. Existing government policies and actions and programs led by nongovernmental organizations (NGOs) and international agencies are reviewed, highlighting the current interconnection and gaps in promoting integrated actions toward climate change adaptation and energy access

    Plants and Plant Products in Local Markets Within Benin City and Environs

    Get PDF
    AbstractThe vulnerability of agriculture systems in Africa to climate change is directly and indirectly affecting the availability and diversity of plants and plant products available in local markets. In this chapter, markets in Benin City and environs were assessed to document the availability of plants and plant products. Markets were grouped into urban, suburban, and rural with each group having four markets. Majority of the plant and plant product vendors were women and 88 plant species belonging to 42 families were found. Their scientific and common names were documented as well as the parts of the plant and associated products available in the markets. Most of the plant and plant products found in local markets belong to major plant families. Urban markets had the highest diversity of plants and plant products. Three categories of plants and plant products were documented. Around 67% of the plants and plant products were categorized as whole plant/plant parts, 28% as processed plant parts, while 5% as reprocessed plant/plant parts. It was revealed that 86% of these plants are used as foods, 11% are for medicinal purposes, while 3% is used for other purposes. About 35% of plants and plant products across the markets were fruits, which is an indication that city and environs are a rich source of fruits. The local knowledge and practices associated with the plants and plant products can contribute towards formulating a strategic response for climate change impacts on agriculture, gender, poverty, food security, and plant diversity
    corecore