33,904 research outputs found

    Artificial Stupidity: A Reply

    Get PDF
    Murphy, Koehler, and Fogler [1997] gave in the last issue of the Journal of Portfolio Management an account of how to raise a neural net’s IQ. The purpose of this reply is to point out some of the general difficulties with neural nets. Also, I would like to mention an alternative method, namely Pade approximants, which does not suffer from these difficulties.Artifical; Stupidity; Neural Networks

    Brain network dynamics in high-functioning individuals with autism

    Get PDF
    Theoretically, autism should be underpinned by aberrant brain dynamics. However, how brain activity changes over time in individuals with autism spectrum disorder (ASD) remains unknown. Here we characterize brain dynamics in autism using an energy-landscape analysis applied to resting-state fMRI data. Whereas neurotypical brain activity frequently transits between two major brain states via an intermediate state, high-functioning adults with ASD show fewer neural transitions due to an unstable intermediate state, and these infrequent transitions predict the severity of autism. Moreover, in contrast to the controls whose IQ is correlated with the neural transition frequency, IQ scores of individuals with ASD are instead predicted by the stability of their brain dynamics. Finally, such brain-behaviour associations are related to functional segregation between brain networks. These findings suggest that atypical functional coordination in the brains of adults with ASD underpins overly stable neural dynamics, which supports both their ASD symptoms and cognitive abilities

    Generalization Error Bounds of Gradient Descent for Learning Over-parameterized Deep ReLU Networks

    Full text link
    Empirical studies show that gradient-based methods can learn deep neural networks (DNNs) with very good generalization performance in the over-parameterization regime, where DNNs can easily fit a random labeling of the training data. Very recently, a line of work explains in theory that with over-parameterization and proper random initialization, gradient-based methods can find the global minima of the training loss for DNNs. However, existing generalization error bounds are unable to explain the good generalization performance of over-parameterized DNNs. The major limitation of most existing generalization bounds is that they are based on uniform convergence and are independent of the training algorithm. In this work, we derive an algorithm-dependent generalization error bound for deep ReLU networks, and show that under certain assumptions on the data distribution, gradient descent (GD) with proper random initialization is able to train a sufficiently over-parameterized DNN to achieve arbitrarily small generalization error. Our work sheds light on explaining the good generalization performance of over-parameterized deep neural networks.Comment: 27 pages. This version simplifies the proof and improves the presentation in Version 3. In AAAI 202
    corecore