110 research outputs found

    Impact of EU duty cycle and transmission power limitations for sub-GHz LPWAN SRDs : an overview and future challenges

    Get PDF
    Long-range sub-GHz technologies such as LoRaWAN, SigFox, IEEE 802.15.4, and DASH7 are increasingly popular for academic research and daily life applications. However, especially in the European Union (EU), the use of their corresponding frequency bands are tightly regulated, since they must confirm to the short-range device (SRD) regulations. Regulations and standards for SRDs exist on various levels, from global to national, but are often a source of confusion. Not only are multiple institutes responsible for drafting legislation and regulations, depending on the type of document can these rules be informational or mandatory. Regulations also vary from region to region; for example, regulations in the United States of America (USA) rely on electrical field strength and harmonic strength, while EU regulations are based on duty cycle and maximum transmission power. A common misconception is the presence of a common 1% duty cycle, while in fact the duty cycle is frequency band-specific and can be loosened under certain circumstances. This paper clarifies the various regulations for the European region, the parties involved in drafting and enforcing regulation, and the impact on recent technologies such as SigFox, LoRaWAN, and DASH7. Furthermore, an overview is given of potential mitigation approaches to cope with the duty cycle constraints, as well as future research directions

    6LoRa: Full Stack IPv6 Networking with DSME-LoRa on Low Power IoT Nodes

    Full text link
    Long range wireless transmission techniques such as LoRa are preferential candidates for a substantial class of IoT applications, as they avoid the complexity of multi-hop wireless forwarding. The existing network solutions for LoRa, however, are not suitable for peer-to-peer communication, which is a key requirement for many IoT applications. In this work, we propose a networking system - 6LoRa, that enables IPv6 communication over LoRa. We present a full stack system implementation on RIOT OS and evaluate the system on a real testbed using realistic application scenarios with CoAP. Our findings confirm that our approach outperforms existing solutions in terms of transmission delay and packet reception ratio at comparable energy consumption

    Wireless communication technologies for the Internet of Things

    Get PDF
    Internet of Things (IoT) is the inter-networking paradigm based on many processes such as identifying, sensing, networking and computation. An IoT technology stack provides seamless connectivity between various physical and virtual objects. The increasing number of IoT applications leads to the issue of transmitting, storing, and processing a large amount of data. Therefore, it is necessary to enable a system capable to handle the growing traffic requirements with the required level of QoS (Quality of Service). IoT devices become more complex due to the various components such as sensors and network interfaces. The IoT environment is often demanding for mobile power source, QoS, mobility, reliability, security, and other requirements. Therefore, new IoT technologies are required to overcome some of these issues. In recent years new wireless communication technologies are being developed to support the development of new IoT applications. This paper provides an overview of some of the most widely used wireless communication technologies used for IoT applications

    Delay-Tolerant ICN and Its Application to LoRa

    Full text link
    Connecting long-range wireless networks to the Internet imposes challenges due to vastly longer round-trip-times (RTTs). In this paper, we present an ICN protocol framework that enables robust and efficient delay-tolerant communication to edge networks. Our approach provides ICN-idiomatic communication between networks with vastly different RTTs. We applied this framework to LoRa, enabling end-to-end consumer-to-LoRa-producer interaction over an ICN-Internet and asynchronous data production in the LoRa edge. Instead of using LoRaWAN, we implemented an IEEE 802.15.4e DSME MAC layer on top of the LoRa PHY and ICN protocol mechanisms in RIOT OS. Executed on off-the-shelf IoT hardware, we provide a comparative evaluation for basic NDN-style ICN [60], RICE [31]-like pulling, and reflexive forwarding [46]. This is the first practical evaluation of ICN over LoRa using a reliable MAC. Our results show that periodic polling in NDN works inefficiently when facing long and differing RTTs. RICE reduces polling overhead and exploits gateway knowledge, without violating ICN principles. Reflexive forwarding reflects sporadic data generation naturally. Combined with a local data push, it operates efficiently and enables lifetimes of >1 year for battery powered LoRa-ICN nodes.Comment: 12 pages, 7 figures, 2 table

    Sumidero híbrido para redes inalámbricas de sensores

    Full text link
    Actualmente los dispositivos que dan vida al Internet de las Cosas son aquellos sistemas destinados a conectarse con un servicio externo al que enviar o recibir un conjunto de información u órdenes que varía en función del marco de la aplicación y de sus requisitos. La constante evolución de estos dispositivos viene determinada por varios factores. En primer lugar, el coste por dispositivo se abarata debido a la miniaturización de los componentes electrónicos. El consumo eléctrico de las baterías también es menor gracias al empleo de tecnologías de comunicación más eficientes y algoritmos que reducen el tiempo empleado para comunicarse por radio. Por último, la capacidad de integración actual permite equipar a estos dispositivos con una potencia de cálculo muy superior a la de generaciones anteriores. Estos nuevos sistemas pueden procesar en el propio chip la información obtenida con un alto grado de detalle. De esta manera, solo se envían al exterior los datos procesados que estén listos para utilizar o enviar un conjunto de datos de una sola vez. Todos estos avances permiten el uso masivo de estos dispositivos en nuevos sectores y que las aplicaciones actuales y futuras se enriquezcan en gran medida, beneficiando a usuarios, empresas, industrias, gobiernos o incluso universidades. A medida que aumentan los escenarios posibles en el que estos dispositivos deben de conectarse y comunicarse con otras redes se definen unos nuevos retos de conectividad. En este trabajo desarrollaremos un nuevo tipo de sumidero híbrido que dará soporte a la comunicación de distintos dispositivos que forman parte de la infraestructura del Internet de las Cosas. Los sumideros híbridos permitirán a estos pequeños sistemas enviar la información que recolectan sus sensores hacia un servicio externo. En concreto desarrollaremos un diseño flexible capaz de aceptar diferentes tipos de tecnologías inalámbricas y protocolos. Los sumideros híbridos podrán ser reconfigurados en función de los cambios de la topología. El diseño podrá ser desplegado en todo tipo de entornos, ya que no requiere una posición fija de los sistemas ni los sensores. Esto a su vez posibilitará la utilización de un gran abanico de sensores y actuadores. Discutiremos las plataformas hardware de bajo coste y software de código abierto que se emplearán para implementar el sistema final y además seremos capaces de proporcionar tolerancia a fallos en ciertos puntos de la red para conseguir una infraestructura más robusta. Una vez que el sistema este totalmente montado y sea funcional evaluaremos el diseño planteado elaborando un estudio de prestaciones sobre un entorno de pruebas comparable al mundo real. En las pruebas un dispositivo embebido enviará la información recolectada de sus sensores a una plataforma del Internet de las Cosas en la nube bajo diferentes circunstancias de conexión. Durante la ejecución de las pruebas monitorizaremos varios parámetros del diseño que nos permitirá conocer los beneficios obtenidos en este trabajo y descubrir nuevas líneas de investigación para continuar con el desarrollo de este trabajo.These days the devices that give life to the Internet of Things are those systems designed to connect with an external service that sends or receives a set of information or orders that varies depending on the framework of the application and its requirements. The evolution of these devices is continuing due to several factors. In the first place, the cost per device is becoming cheaper due to the miniaturization of the electronic components used. The electric consumption of the batteries is also lower thanks to the use of more efficient communication technologies and which are equipped with algorithms that reduce the time expend in the communication over the radio. Finally, the current integration capacity allows equipping these devices with more computing power than the previous generations. These new systems can process inside the chip the information obtained with a high degree of detail in the system itself. In this way, only the data that are sent abroad are ready to use or a set of data can be send at once. All these advances allow the massive use of these devices in new sectors. Furthermore current and future applications are greatly enriched, benefiting users, companies, industries, governments or even universities. As the possible scenarios in which these devices should connect and communicate with other networks are becoming larger, new connectivity challenges are defined. In this work we will develop a network based on a new type of hybrid sink that will support the communication of the devices that are part of the Internet of Things infrastructure. The hybrid sinks will allow these small systems to send the information collected by their sensors to an external service. We will develop a flexible design capable of accepting different types of wireless technologies. The hybrid sinks can be reconfigured based on changes in the topology. This design can be deployed in all types of environments because neither the systems nor sensors need a fixed position in the field. In return this will enable the use of a wide range of sensors and actuators. We will discuss the low-cost hardware platforms and open source software that will be used to implement the final system and we will also be able to provide fault tolerance at certain points in the network to achieve a more robust infrastructure. Once the system is fully assembled and functional, we will evaluate the proposed design, preparing a study of benefits on a testing environment that is comparable to the real world. In the tests an embedded device will send the information collected from its sensors to an-Internet of Things platform in the cloud under different connection circumstances. During the execution of the tests we will monitor several parameters of the design that will allow us to know the benefits obtained in this work and discover new lines of research to continue with the development of this work.Risueño Sánchez, A. (2018). Sumidero híbrido para redes inalámbricas de sensores. http://hdl.handle.net/10251/112044TFG

    Securing name resolution in the IoT: DNS over CoAP

    Full text link
    In this paper, we present the design, implementation, and analysis of DNS over CoAP (DoC), a new proposal for secure and privacy-friendly name resolution of constrained IoT devices. We implement different design choices of DoC in RIOT, an open-source operating system for the IoT, evaluate performance measures in a testbed, compare with DNS over UDP and DNS over DTLS, and validate our protocol design based on empirical DNS IoT data. Our findings indicate that plain DoC is on par with common DNS solutions for the constrained IoT but significantly outperforms when additional, CoAP standard features are used such as block-wise transfer or caching. With OSCORE for end-to-end security, we can save more than 10 kBytes of code memory compared to DTLS while enabling group communication without compromising the trust chain when using intermediate proxies or caches. We also discuss a scheme for very restricted links that compresses redundant or excessive information by up to 70%.Comment: 12 pages, 13 figures, 4 table

    Sparse Satellite Constellation Design for LoRa-based Direct-to-Satellite Internet of Things

    Get PDF
    A global Internet of Things is possible by embracing constellations of satellites acting as orbiting gateways in a Directto- Satellite IoT (DtS-IoT). By removing the dependency on ground gateways, DtS-IoT enables a direct service on the regions illuminated by the passing-by satellite. After an in-depth overview of relevant experiments and candidate technologies, we discover that specific configurations of the Long-Range (LoRa) network protocol specification are particularly appealing to realize the DtS-IoT vision. Specifically, we profit from the maximum clock drift permitted on LoRa devices to propose the sparse satellite constellations concept. This approach significantly reduces the in-orbit DtS-IoT infrastructure at the expense of latency anyway present in resource-constrained IoT networks. We then introduce a novel algorithm comprising specific heuristics to design quasioptimal topologies for sparse IoT constellations. Obtained results show that LoRa-compatible DtS-IoT services can already be provided world-wide with 10% and 4% of the satellites required for a traditional dense constellation, in different configurations

    IoT-verkkoteknologioiden suorituskyky

    Get PDF
    Tiivistelmä. Jotta maailmasta voidaan tehdä älykkäämpi ja entistä automatisoidumpi tarvitaan teknologia, joka osaa kerätä, käsitellä, lähettää ja vastaanottaa dataa. Esineiden internet eli Internet of Things (IoT) on luotu juuri sitä varten. IoT on jo tähän hetkeen mennessä mullistanut maailmaa, mutta suurin osa sen kapasiteetista on vielä käyttämättä. IoT-verkkoteknologiat ovat juuri se osa IoT:tä, joka mahdollistaa datan lähetyksen ja vastaanottamisen. Tämän kandidaatin tutkielman aiheena on IoT verkkoteknologioiden suorituskyky keskittyen neljään teknologiaan. Teknologiat ovat Bluetooth Low Energy, ZigBee, LoRaWAN ja Narrowband IoT (NB-IoT). Tutkielmassa etsitään sopivinta teknologiaa sovellukseen, jossa kerätään anturidataa ja etäohjataan laitteita lähes reaaliaikaisesti internetin yli. Teknologioita tutkiessa keskitytään erityisesti niiden energiatehokkuuteen, verkkotopologioihin, laitteiden maksimimäärään verkossa, datansiirtonopeuteen ja viiveeseen. Jokaiseen mainittuun teknologiaan pureudutaan yksitellen esitellen myös niiden perustoimintatavat. Lopullisessa vertailussa teknologioita vertaillaan sen mukaan, että millaiseen sovellukseen teknologia on sopiva ja miten se soveltuu tutkielmassa esitettyyn sovellukseen. Tuloksista nähdään, että LoRaWAN ei ole ideaali teknologia, mikäli laitteita halutaan ohjata reaaliaikaisesti ilman viivettä. Bluetooth Low Energy:n todetaan olevan sopiva teknologia, jos sovelluksessa tarvitaan nopeaa tiedonsiirtonopeutta. NB-IoT:n toiminnan rajaaminen vain sinne, missä 4G kuuluvuus on hyvä, tekee siitä epäsopivan teknologian sovellukseen silloin, kun 4G kuuluvuus on huono. ZigBee on sopiva teknologia tutkielmassa mukana olleeseen sovellukseen sen pitkän kantaman, energiatehokkuuden, suuren kapasiteetin ja toimintavarmuuden vuoksi silloin, kun NB-IoT ei toimi.Performance of the IoT network technologies. Abstract. The modern world is becoming more and more automated and intelligent. Hence, the importance of having a technology that is capable of collecting, processing, sending and receiving data is essential. Internet of Things, or IoT for short, is made for that. IoT has already revolutionized the world, but still most of its capacity is unused. IoT network technologies are the part of the IoT that makes sending and receiving data possible. The topic of this Bachelor’s thesis is the performance of the IoT network technologies, concentrated on four technologies. The technologies are Bluetooth Low Energy, ZigBee, LoRaWAN and Narrowband-IoT. One main point on this thesis is to find a suitable technology for an application that collects sensor data and remotely controls devices over the Internet in near real-time. The most important features of the studied technologies for this thesis are energy efficiency, network topologies, maximum number of devices on the network, data transfer rate and latency. The basic structure of the technologies is also presented. At the final comparison, technologies are compared by for which application technology is suitable and how it suits the mentioned application. The given results show that LoRaWAN is not an ideal technology when devices need to be controlled in near real-time without latency. Bluetooth Low Energy is a suitable technology when the application needs fast bit rate. Narrowband-IoT is suitable technology when the reception of the 4G is strong enough. ZigBee’s wide range, good energy efficiency, large capacity and reliability makes it a suitable technology when the reception of the 4G is not strong enough
    corecore