263 research outputs found

    A DHCP-based IP address autoconfiguration for MANETs

    Get PDF
    Mobile Ad hoc Networks (MANETs) are expected to become more and more important in the upcoming years, playing a significant role in 4G networks. In order to enable the deployment of IP services in such networks, IP address autoconfiguration mechanisms are required. Although the ad hoc topic has been a very intense research area, with a plethora of published papers about routing, there is a lack of proposals of address autoconfiguration with enough support from the technical community. This paper presents a mechanism suited for MANETs connected to the Internet, reusing existing and widely deployed address autoconfiguration protocols, such as DHCPv6 and Router Advertisements

    Address autoconfiguration in wireless ad hoc networks: protocols and techniques

    Full text link

    Auto-Configuration Protocols in Mobile Ad Hoc Networks

    Get PDF
    The TCP/IP protocol allows the different nodes in a network to communicate by associating a different IP address to each node. In wired or wireless networks with infrastructure, we have a server or node acting as such which correctly assigns IP addresses, but in mobile ad hoc networks there is no such centralized entity capable of carrying out this function. Therefore, a protocol is needed to perform the network configuration automatically and in a dynamic way, which will use all nodes in the network (or part thereof) as if they were servers that manage IP addresses. This article reviews the major proposed auto-configuration protocols for mobile ad hoc networks, with particular emphasis on one of the most recent: D2HCP. This work also includes a comparison of auto-configuration protocols for mobile ad hoc networks by specifying the most relevant metrics, such as a guarantee of uniqueness, overhead, latency, dependency on the routing protocol and uniformity

    VANET addressing scheme incorporating geographical information in standard IPv6 header

    Get PDF

    Yet Another Autoconf Proposal (YAAP) for Mobile Ad hoc NETworks

    Get PDF
    This memorandum addresses the issues of automatic address and prefix configuration of MANET routers. Specifically, the paper analyzes the differences between "classic IP networks" and MANETs, emphasizing the interface, link, topology, and addressing assumptions present in "classic IP networks". The paper presents a model for how this can be matched to the specific constraints and conditions of a MANET - i.e., how MANETs can be configured to adhere to the Internet addressing architecture. This sets the stage for development of a MANET autoconfiguration protocol, enabling automatic configuration of MANET interfaces and prefix delegation. This autoconfiguration protocol is characterized by (i) adhering strictly to the Internet addressing architecture, (ii) being able to configure both MANET interface addresses and handle prefix delegation, and (iii) being able to configure both stand-alone MANETs, as well as MANETs connected to an infrastructure providing, e.g., globally scoped addresses/prefixes for use within the MANET. The protocol is specified through timed automatons which, by way of model checking, enable verification of certain protocol properties. Furthermore, a performance study of the basic protocol, as well as of various optimization and extensions hereto, is conducted based on network simulations.Cet article aborde les questions liées à la configuration automatique des adresses et préfixes dans les routeurs MANET. Plus spécifiquement, il analyse les différences entre les « réseaux IP classiques » et les réseaux MANET, en mettant l'accent sur l'interface, les liens et la topologie. Il étudie les hypothèses sous-jacentes dans les réseaux IP classiques et présente un modèle satisfaisant ces hypothèses dans le contexte spécifique des contraintes et conditions d'un réseau MANET, permettant par exemple de configurer les réseaux MANET de sortent qu'ils adhèrent à l'architecture d'adressage d'Internet. Les bases sont ainsi posées pour le développement d'un protocole d'auto configuration MANET, permettant la configuration automatique des interfaces MANET et la délégation automatique de préfixes. Ce protocole de configuration automatique se caractérise (i) par son adhérence stricte à l'architecture d'adressage d'Internet, (ii) par sa double capacité de configuration des interfaces MANET et de délégation de préfixes, et enfin (iii) par son aptitude à configurer aussi bien des réseaux MANETS indépendants que des réseaux MANET connectés à une infrastructure fournissant par exemple des adresses et préfixes à portée globale pour leur utilisation dans MANET. Le protocole est défini au travers d'automates temporels, qui grâce à un modèle de contrôle, permettent de vérifier certaines propriétés du protocole. En outre, une étude des performances du protocole de base, ainsi que de diverses optimisations et extensions, a été conduite à partir de simulations de réseau

    Light Weight Cryptographic Address Generation Using System State Entropy Gathering for IPv6 Based MANETs

    Full text link
    In IPv6 based MANETs, the neighbor discovery enables nodes to self-configure and communicate with neighbor nodes through autoconfiguration. The Stateless address autoconfiguration (SLAAC) has proven to face several security issues. Even though the Secure Neighbor Discovery (SeND) uses Cryptographically Generated Addresses (CGA) to address these issues, it creates other concerns such as need for CA to authenticate hosts, exposure to CPU exhaustion attacks and high computational intensity. These issues are major concern for MANETs as it possesses limited bandwidth and processing power. The paper proposes empirically strong Light Weight Cryptographic Address Generation (LW-CGA) using entropy gathered from system states. Even the system users cannot monitor these system states; hence LW-CGA provides high security with minimal computational complexity and proves to be more suitable for MANETs. The LW-CGA and SeND are implemented and tested to study the performances. The evaluation shows that LW-CGA with good runtime throughput takes minimal address generation latency.Comment: 13 Page

    E-D2HCP: enhanced distributed dynamic host configuration protocol

    Get PDF
    Mobile Ad Hoc Networks (MANETs) consist of mobile nodes equipped with wireless devices. They do not need any kind of pre-existent infrastructure and are about self-managed networks. MANETs enable communication between mobile nodes without direct links and across multihop paths. To ensure correct operation of the routing protocols, MANETs, have to assign unique IP addresses to the MANET devices. Furthermore, the address assignment is an important issue when dealing with MANET networks because the traditional approaches are not applicable without some changes, having to provide new protocols for the address auto-configuration. These schemes must take into account the properties of MANETs such as dynamic topology, limited resources or lack of infrastructure. In this paper, we propose a stateful scheme for dynamic allocation of IP addresses in MANETs entitled Extended Distributed Dynamic Host Configuration Protocol because it is based on a previous piece of work (D2CHP). This extension includes the network merging not covered by its predecessor. Simulation results show that the new protocol also improves D2HCP functionality in areas such as fault tolerance, concurrency and latency.Sección Deptal. de Sistemas Informáticos y ComputaciónFac. de Ciencias MatemáticasTRUEAgencia Espanola de Cooperacion Internacional para el Desarrollo (AECID, Spain) through Accion Integrada MAEC-AECID MEDITERRANEOSecurity Engineering Research Center - Ministry of Knowledge Economy (MKE, Korea)pu
    • …
    corecore