1,167 research outputs found

    The Impact of IPv6 on Penetration Testing

    Get PDF
    In this paper we discuss the impact the use of IPv6 has on remote penetration testing of servers and web applications. Several modifications to the penetration testing process are proposed to accommodate IPv6. Among these modifications are ways of performing fragmentation attacks, host discovery and brute-force protection. We also propose new checks for IPv6-specific vulnerabilities, such as bypassing firewalls using extension headers and reaching internal hosts through available transition mechanisms. The changes to the penetration testing process proposed in this paper can be used by security companies to make their penetration testing process applicable to IPv6 targets

    A BLE-based multi-gateway network infrastructure with handover support for mobile BLE peripherals

    Get PDF
    Bluetooth Low Energy (BLE) is a popular technology within the Internet of Things. It allows low-power, star networks to be set up between a BLE gateway and multiple, power-constrained BLE devices. However, these networks tend to be static, not supporting BLE devices that can freely move around in an environment of multiple interconnected BLE gateways and perform handovers whenever necessary. This work proposes two alternative network architectures for mobile BLE peripherals. One leverages on IPv6 over BLE, whereas the other combines default BLE mechanisms with an additional custom controller. On top, we study in detail the handover mechanism that must be present in both architectures and compare the performance of both a passive and active handover approach. The passive handover approach can be set up without any extra implementation, but an active handover approach offers more proactive handover decisions and can provide a much lower handover latency. All proposed solutions have been implemented and validated on real hardware, showing the feasibility of having future infrastructures with support for mobile BLE devices

    Beyond Counting: New Perspectives on the Active IPv4 Address Space

    Full text link
    In this study, we report on techniques and analyses that enable us to capture Internet-wide activity at individual IP address-level granularity by relying on server logs of a large commercial content delivery network (CDN) that serves close to 3 trillion HTTP requests on a daily basis. Across the whole of 2015, these logs recorded client activity involving 1.2 billion unique IPv4 addresses, the highest ever measured, in agreement with recent estimates. Monthly client IPv4 address counts showed constant growth for years prior, but since 2014, the IPv4 count has stagnated while IPv6 counts have grown. Thus, it seems we have entered an era marked by increased complexity, one in which the sole enumeration of active IPv4 addresses is of little use to characterize recent growth of the Internet as a whole. With this observation in mind, we consider new points of view in the study of global IPv4 address activity. Our analysis shows significant churn in active IPv4 addresses: the set of active IPv4 addresses varies by as much as 25% over the course of a year. Second, by looking across the active addresses in a prefix, we are able to identify and attribute activity patterns to network restructurings, user behaviors, and, in particular, various address assignment practices. Third, by combining spatio-temporal measures of address utilization with measures of traffic volume, and sampling-based estimates of relative host counts, we present novel perspectives on worldwide IPv4 address activity, including empirical observation of under-utilization in some areas, and complete utilization, or exhaustion, in others.Comment: in Proceedings of ACM IMC 201

    The Rise of Certificate Transparency and Its Implications on the Internet Ecosystem

    Full text link
    In this paper, we analyze the evolution of Certificate Transparency (CT) over time and explore the implications of exposing certificate DNS names from the perspective of security and privacy. We find that certificates in CT logs have seen exponential growth. Website support for CT has also constantly increased, with now 33% of established connections supporting CT. With the increasing deployment of CT, there are also concerns of information leakage due to all certificates being visible in CT logs. To understand this threat, we introduce a CT honeypot and show that data from CT logs is being used to identify targets for scanning campaigns only minutes after certificate issuance. We present and evaluate a methodology to learn and validate new subdomains from the vast number of domains extracted from CT logged certificates.Comment: To be published at ACM IMC 201

    The Use of Firewalls in an Academic Environment

    No full text

    A Survey Of IPv6 Address Usage In The Public Domain Name System

    Get PDF
    The IPv6 protocol has been slowly increasing in use on the Internet. The main reason for the development of the protocol is that the address space provided by IPv4 is nearing exhaustion. The pool of addresses provided by IPv6 is 296 times larger than IPv4, and should be sufficient to provide an address for every device for the foreseeable future. Another potential advantage of this significantly large address space is the use of randomly assigned addresses as a security barrier as part of a defence in depth strategy. This research examined the addresses allocated by those implementing IPv6 to determine what method or pattern of allocation was being used by adopters of the protocol. This examination was done through the use of DNS queries of the AAAA IPv6 host record using public DNS servers. It was observed that 55.84% of IPv6 addresses were in the range of 0 to (232 − 1). For those addresses with unique interface identifier (IID) portions, a nearly equal number of sequential and random IIDs were observed. Hong Kong and Germany were found to have the greatest number of IPv6 addresses. These results suggest that adopters are allocating most addresses sequentially, meaning that no security advantage is being obtained. It is unclear as to whether this is through design or the following of accepted practice. Future research will continue to survey the IPv6 address space to determine whether the patterns observed here remain constant

    IPv6 Network Mobility

    Get PDF
    Network Authentication, Authorization, and Accounting has been used since before the days of the Internet as we know it today. Authentication asks the question, “Who or what are you?” Authorization asks, “What are you allowed to do?” And fi nally, accounting wants to know, “What did you do?” These fundamental security building blocks are being used in expanded ways today. The fi rst part of this two-part series focused on the overall concepts of AAA, the elements involved in AAA communications, and highlevel approaches to achieving specifi c AAA goals. It was published in IPJ Volume 10, No. 1[0]. This second part of the series discusses the protocols involved, specifi c applications of AAA, and considerations for the future of AAA

    Behavioral Analysis on IPv4 Malware in both IPv4 and IPv6 Network Environment

    Get PDF
    Malware is become an epidemic in computer net-work nowadays. Malware attacks are a significant threat to networks. A conducted survey shows malware attacks may result a huge financial impact. This scenario has become worse when users are migrating to a new environment which is Internet Protocol Version 6. In this paper, a real Nimda worm was released on to further understand the worm beha-vior in real network traffic. A controlled environment of both IPv4 and IPv6 network were deployed as a testbed for this study. The result between these two scenarios will be analyzed and discussed further in term of the worm behavior. The ex-periment result shows that even IPv4 malware still can infect the IPv6 network environment without any modification. New detection techniques need to be proposed to remedy this prob-lem swiftly
    corecore