325 research outputs found

    Video-based Sign Language Recognition without Temporal Segmentation

    Full text link
    Millions of hearing impaired people around the world routinely use some variants of sign languages to communicate, thus the automatic translation of a sign language is meaningful and important. Currently, there are two sub-problems in Sign Language Recognition (SLR), i.e., isolated SLR that recognizes word by word and continuous SLR that translates entire sentences. Existing continuous SLR methods typically utilize isolated SLRs as building blocks, with an extra layer of preprocessing (temporal segmentation) and another layer of post-processing (sentence synthesis). Unfortunately, temporal segmentation itself is non-trivial and inevitably propagates errors into subsequent steps. Worse still, isolated SLR methods typically require strenuous labeling of each word separately in a sentence, severely limiting the amount of attainable training data. To address these challenges, we propose a novel continuous sign recognition framework, the Hierarchical Attention Network with Latent Space (LS-HAN), which eliminates the preprocessing of temporal segmentation. The proposed LS-HAN consists of three components: a two-stream Convolutional Neural Network (CNN) for video feature representation generation, a Latent Space (LS) for semantic gap bridging, and a Hierarchical Attention Network (HAN) for latent space based recognition. Experiments are carried out on two large scale datasets. Experimental results demonstrate the effectiveness of the proposed framework.Comment: 32nd AAAI Conference on Artificial Intelligence (AAAI-18), Feb. 2-7, 2018, New Orleans, Louisiana, US

    PsyMo: A Dataset for Estimating Self-Reported Psychological Traits from Gait

    Full text link
    Psychological trait estimation from external factors such as movement and appearance is a challenging and long-standing problem in psychology, and is principally based on the psychological theory of embodiment. To date, attempts to tackle this problem have utilized private small-scale datasets with intrusive body-attached sensors. Potential applications of an automated system for psychological trait estimation include estimation of occupational fatigue and psychology, and marketing and advertisement. In this work, we propose PsyMo (Psychological traits from Motion), a novel, multi-purpose and multi-modal dataset for exploring psychological cues manifested in walking patterns. We gathered walking sequences from 312 subjects in 7 different walking variations and 6 camera angles. In conjunction with walking sequences, participants filled in 6 psychological questionnaires, totalling 17 psychometric attributes related to personality, self-esteem, fatigue, aggressiveness and mental health. We propose two evaluation protocols for psychological trait estimation. Alongside the estimation of self-reported psychological traits from gait, the dataset can be used as a drop-in replacement to benchmark methods for gait recognition. We anonymize all cues related to the identity of the subjects and publicly release only silhouettes, 2D / 3D human skeletons and 3D SMPL human meshes

    Attention-based Temporal Weighted Convolutional Neural Network for Action Recognition

    Full text link
    Research in human action recognition has accelerated significantly since the introduction of powerful machine learning tools such as Convolutional Neural Networks (CNNs). However, effective and efficient methods for incorporation of temporal information into CNNs are still being actively explored in the recent literature. Motivated by the popular recurrent attention models in the research area of natural language processing, we propose the Attention-based Temporal Weighted CNN (ATW), which embeds a visual attention model into a temporal weighted multi-stream CNN. This attention model is simply implemented as temporal weighting yet it effectively boosts the recognition performance of video representations. Besides, each stream in the proposed ATW framework is capable of end-to-end training, with both network parameters and temporal weights optimized by stochastic gradient descent (SGD) with backpropagation. Our experiments show that the proposed attention mechanism contributes substantially to the performance gains with the more discriminative snippets by focusing on more relevant video segments.Comment: 14th International Conference on Artificial Intelligence Applications and Innovations (AIAI 2018), May 25-27, 2018, Rhodes, Greec

    Anonymization of Sensitive Quasi-Identifiers for l-diversity and t-closeness

    Get PDF
    A number of studies on privacy-preserving data mining have been proposed. Most of them assume that they can separate quasi-identifiers (QIDs) from sensitive attributes. For instance, they assume that address, job, and age are QIDs but are not sensitive attributes and that a disease name is a sensitive attribute but is not a QID. However, all of these attributes can have features that are both sensitive attributes and QIDs in practice. In this paper, we refer to these attributes as sensitive QIDs and we propose novel privacy models, namely, (l1, ..., lq)-diversity and (t1, ..., tq)-closeness, and a method that can treat sensitive QIDs. Our method is composed of two algorithms: an anonymization algorithm and a reconstruction algorithm. The anonymization algorithm, which is conducted by data holders, is simple but effective, whereas the reconstruction algorithm, which is conducted by data analyzers, can be conducted according to each data analyzer’s objective. Our proposed method was experimentally evaluated using real data sets

    3D Object Instance Recognition and Pose Estimation Using Triplet Loss with Dynamic Margin

    Full text link
    In this paper, we address the problem of 3D object instance recognition and pose estimation of localized objects in cluttered environments using convolutional neural networks. Inspired by the descriptor learning approach of Wohlhart et al., we propose a method that introduces the dynamic margin in the manifold learning triplet loss function. Such a loss function is designed to map images of different objects under different poses to a lower-dimensional, similarity-preserving descriptor space on which efficient nearest neighbor search algorithms can be applied. Introducing the dynamic margin allows for faster training times and better accuracy of the resulting low-dimensional manifolds. Furthermore, we contribute the following: adding in-plane rotations (ignored by the baseline method) to the training, proposing new background noise types that help to better mimic realistic scenarios and improve accuracy with respect to clutter, adding surface normals as another powerful image modality representing an object surface leading to better performance than merely depth, and finally implementing an efficient online batch generation that allows for better variability during the training phase. We perform an exhaustive evaluation to demonstrate the effects of our contributions. Additionally, we assess the performance of the algorithm on the large BigBIRD dataset to demonstrate good scalability properties of the pipeline with respect to the number of models

    Non-line-of-sight Imaging

    Full text link
    Emerging single-photon-sensitive sensors combined with advanced inverse methods to process picosecond-accurate time-stamped photon counts have given rise to unprecedented imaging capabilities. Rather than imaging photons that travel along direct paths from a source to an object and back to the detector, non-line-of-sight (NLOS) imaging approaches analyse photons {scattered from multiple surfaces that travel} along indirect light paths to estimate 3D images of scenes outside the direct line of sight of a camera, hidden by a wall or other obstacles. Here we review recent advances in the field of NLOS imaging, discussing how to see around corners and future prospects for the field

    Learning Affinity via Spatial Propagation Networks

    Full text link
    In this paper, we propose spatial propagation networks for learning the affinity matrix for vision tasks. We show that by constructing a row/column linear propagation model, the spatially varying transformation matrix exactly constitutes an affinity matrix that models dense, global pairwise relationships of an image. Specifically, we develop a three-way connection for the linear propagation model, which (a) formulates a sparse transformation matrix, where all elements can be the output from a deep CNN, but (b) results in a dense affinity matrix that effectively models any task-specific pairwise similarity matrix. Instead of designing the similarity kernels according to image features of two points, we can directly output all the similarities in a purely data-driven manner. The spatial propagation network is a generic framework that can be applied to many affinity-related tasks, including but not limited to image matting, segmentation and colorization, to name a few. Essentially, the model can learn semantically-aware affinity values for high-level vision tasks due to the powerful learning capability of the deep neural network classifier. We validate the framework on the task of refinement for image segmentation boundaries. Experiments on the HELEN face parsing and PASCAL VOC-2012 semantic segmentation tasks show that the spatial propagation network provides a general, effective and efficient solution for generating high-quality segmentation results.Comment: A long version of NIPS 201

    DeepV2D: Video to Depth with Differentiable Structure from Motion

    Full text link
    We propose DeepV2D, an end-to-end deep learning architecture for predicting depth from video. DeepV2D combines the representation ability of neural networks with the geometric principles governing image formation. We compose a collection of classical geometric algorithms, which are converted into trainable modules and combined into an end-to-end differentiable architecture. DeepV2D interleaves two stages: motion estimation and depth estimation. During inference, motion and depth estimation are alternated and converge to accurate depth. Code is available https://github.com/princeton-vl/DeepV2D

    Reducing Total Power Consumption Method in Cloud Computing Environments

    Full text link
    The widespread use of cloud computing services is expected to increase the power consumed by ICT equipment in cloud computing environments rapidly. This paper first identifies the need of the collaboration among servers, the communication network and the power network, in order to reduce the total power consumption by the entire ICT equipment in cloud computing environments. Five fundamental policies for the collaboration are proposed and the algorithm to realize each collaboration policy is outlined. Next, this paper proposes possible signaling sequences to exchange information on power consumption between network and servers, in order to realize the proposed collaboration policy. Then, in order to reduce the power consumption by the network, this paper proposes a method of estimating the volume of power consumption by all network devices simply and assigning it to an individual user.Comment: 16 page
    corecore