7 research outputs found

    Watermarking strategies for IP protection of micro-processor cores

    Full text link
    L. Parrilla, E. Castillo, U. Meyer-Bäse, A. García, D. González, E. Todorovich, E. Boemo, A. Lloris, "Watermarking strategies for IP protection of micro-processor cores", Proceedings of SPIE 7703, Independent Component Analyses, Wavelets, Neural Networks, Biosystems, and Nanoengineering VIII, 77030L (2010). Copyright 2010 Society of Photo‑Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.Reuse-based design has emerged as one of the most important methodologies for integrated circuit design, with reusable Intellectual Property (IP) cores enabling the optimization of company resources due to reduced development time and costs. This is of special interest in the Field-Programmable Logic (FPL) domain, which mainly relies on automatic synthesis tools. However, this design methodology has brought to light the intellectual property protection (IPP) of those modules, with most forms of protection in the EDA industry being difficult to translate to this domain. However, IP core watermarking has emerged as a tool for IP core protection. Although watermarks may be inserted at different levels of the design flow, watermarking Hardware Description Language (HDL) descriptions has been proved to be a robust and secure option. In this paper, a new framework for the protection of μP cores is presented. The protection scheme is derived from the IPP@HDL procedure and it has been adapted to the singularities of μP cores, overcoming the problems for the digital signature extraction in such systems. Additionally, the feature of hardware activation has been introduced, allowing the distribution of μP cores in a "demo" mode and a later activation that can be easily performed by the customer executing a simple program. Application examples show that the additional hardware introduced for protection and/or activation has no effect over the performance, and showing an assumable area increase.This work was partially funded by project TEC2007-68074-C02-01/MIC (Plan Nacional I+D+I, Spain). CAD tools and supporting material were provided by Altera Corp. trough University Program agreements. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the sponsors

    A Chaotic IP Watermarking in Physical Layout Level Based on FPGA

    Get PDF
    A new chaotic map based IP (Intellectual Property) watermarking scheme at physical design level is presented. An encrypted watermark is embedded into the physical layout of a circuit by configuring LUT (Lookup Table) as specific functions when it is placed and routed onto the FPGA (Field-Programmable Gate Array). The main contribution is the use of multiple chaotic maps in the processes of watermark design and embedding, which efficiently improves the security of watermark. A hashed chaotic sequence is used to scramble the watermark. Secondly, two pseudo-random sequences are generated by using chaotic maps. One is used to determine unused LUT locations, and the other divides the watermark into groups. The watermark identifies original owner and is difficult to detect. This scheme was tested on a Xilinx Virtex XCV600-6bg432 FPGA. The experimental results show that our method has low impact on functionality, short path delay and high robustness in comparison with other methods

    Performance Evaluation for IP Protection Watermarking Techniques

    Get PDF

    Stealthy Opaque Predicates in Hardware -- Obfuscating Constant Expressions at Negligible Overhead

    Full text link
    Opaque predicates are a well-established fundamental building block for software obfuscation. Simplified, an opaque predicate implements an expression that provides constant Boolean output, but appears to have dynamic behavior for static analysis. Even though there has been extensive research regarding opaque predicates in software, techniques for opaque predicates in hardware are barely explored. In this work, we propose a novel technique to instantiate opaque predicates in hardware, such that they (1) are resource-efficient, and (2) are challenging to reverse engineer even with dynamic analysis capabilities. We demonstrate the applicability of opaque predicates in hardware for both, protection of intellectual property and obfuscation of cryptographic hardware Trojans. Our results show that we are able to implement stealthy opaque predicates in hardware with minimal overhead in area and no impact on latency

    An internet-based IP protection scheme for circuit designs using linear feedback shift register (LFSR)-based locking

    Full text link
    Abstract—Due to emerging trend of design reuse in VLSI circuits, the intellectual property (IP) of design faces serious challenges like forgery, theft, misappropriation etc. These in-creasing risks of design IP stored in design repositories, or the threat of hacking the same during its Internet-based trans-mission, mandates design file encryption and its appropriate watermarking. In this paper, we propose a novel Internet-based scheme to tackle this problem. Input to the proposed scheme is a generic graph corresponding to a digital system design. Watermarking of the graph and its encryption are achieved using a new linear feedback shift register(LFSR)-based locking scheme. The proposed scheme makes unauthorized disclosure of valuable designs almost infeasible, and can easily detect any alteration of the design file during transmission. It ensures authentication of the original designer as well as non-repudiation between the seller and the buyer. Empirical evidences on several well-known benchmark problem sets are encouraging. Index Terms—Intellectual property protection (IPP), Water-marking, Encryption, Decryption

    WICC 2017 : XIX Workshop de Investigadores en Ciencias de la ComputaciĂłn

    Get PDF
    Actas del XIX Workshop de Investigadores en Ciencias de la Computación (WICC 2017), realizado en el Instituto Tecnológico de Buenos Aires (ITBA), el 27 y 28 de abril de 2017.Red de Universidades con Carreras en Informática (RedUNCI
    corecore