15 research outputs found

    Overview of the ImageCLEF 2013 medical tasks

    Get PDF
    In 2013, the tenth edition of the medical task of the Image-CLEF benchmark was organized. For the first time, the ImageCLEFmedworkshop takes place in the United States of America at the annualAMIA (American Medical Informatics Association) meeting even thoughthe task was organized as in previous years in connection with the otherImageCLEF tasks. Like 2012, a subset of the open access collection ofPubMed Central was distributed. This year, there were four subtasks:modality classification, compound figure separation, image–based andcase–based retrieval. The compound figure separation task was includeddue to the large number of multipanel images available in the literatureand the importance to separate them for targeted retrieval. More com-pound figures were also included in the modality classification task tomake it correspond to the distribution in the full database. The retrievaltasks remained in the same format as in previous years but a largernumber of tasks were available for image–based and case–based tasks.This paper presents an analysis of the techniques applied by the tengroups participating 2013 in ImageCLEFmed

    Overview of ImageCLEF 2018: Challenges, Datasets and Evaluation

    Get PDF
    This paper presents an overview of the ImageCLEF 2018 evaluation campaign, an event that was organized as part of the CLEF (Conference and Labs of the Evaluation Forum) Labs 2018. ImageCLEF is an ongoing initiative (it started in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval with the aim of providing information access to collections of images in various usage scenarios and domains. In 2018, the 16th edition of ImageCLEF ran three main tasks and a pilot task: (1) a caption prediction task that aims at predicting the caption of a figure from the biomedical literature based only on the figure image; (2) a tuberculosis task that aims at detecting the tuberculosis type, severity and drug resistance from CT (Computed Tomography) volumes of the lung; (3) a LifeLog task (videos, images and other sources) about daily activities understanding and moment retrieval, and (4) a pilot task on visual question answering where systems are tasked with answering medical questions. The strong participation, with over 100 research groups registering and 31 submitting results for the tasks, shows an increasing interest in this benchmarking campaign

    Overview of the ImageCLEF 2016 Medical Task

    Get PDF
    ImageCLEF is the image retrieval task of the Conference and Labs of the Evaluation Forum (CLEF). ImageCLEF has historically focused on the multimodal and language–independent retrieval of images. Many tasks are related to image classification and the annotation of image data as well. The medical task has focused more on image retrieval in the beginning and then retrieval and classification tasks in subsequent years. In 2016 a main focus was the creation of meta data for a collection of medical images taken from articles of the the biomedical scientific literature. In total 8 teams participated in the four tasks and 69 runs were submitted. No team participated in the caption prediction task, a totally new task. Deep learning has now been used for several of the ImageCLEF tasks and by many of the participants obtaining very good results. A majority of runs was submitting using deep learning and this follows general trends in machine learning. In several of the tasks multimodal approaches clearly led to best results

    Medical image modality classification using discrete Bayesian Networks

    Get PDF
    In this paper we propose a complete pipeline for medical image modality classification focused on the application of discrete Bayesian network classifiers. Modality refers to the categorization of biomedical images from the literature according to a previously defined set of image types, such as X-ray, graph or gene sequence. We describe an extensive pipeline starting with feature extraction from images, data combination, pre-processing and a range of different classification techniques and models. We study the expressive power of several image descriptors along with supervised discretization and feature selection to show the performance of discrete Bayesian networks compared to the usual deterministic classifiers used in image classification. We perform an exhaustive experimentation by using the ImageCLEFmed 2013 collection. This problem presents a high number of classes so we propose several hierarchical approaches. In a first set of experiments we evaluate a wide range of parameters for our pipeline along with several classification models. Finally, we perform a comparison by setting up the competition environment between our selected approaches and the best ones of the original competition. Results show that the Bayesian Network classifiers obtain very competitive results. Furthermore, the proposed approach is stable and it can be applied to other problems that present inherent hierarchical structures of classes

    Unsupervised learning for concept detection in medical images: a comparative analysis

    Full text link
    As digital medical imaging becomes more prevalent and archives increase in size, representation learning exposes an interesting opportunity for enhanced medical decision support systems. On the other hand, medical imaging data is often scarce and short on annotations. In this paper, we present an assessment of unsupervised feature learning approaches for images in the biomedical literature, which can be applied to automatic biomedical concept detection. Six unsupervised representation learning methods were built, including traditional bags of visual words, autoencoders, and generative adversarial networks. Each model was trained, and their respective feature space evaluated using images from the ImageCLEF 2017 concept detection task. We conclude that it is possible to obtain more powerful representations with modern deep learning approaches, in contrast with previously popular computer vision methods. Although generative adversarial networks can provide good results, they are harder to succeed in highly varied data sets. The possibility of semi-supervised learning, as well as their use in medical information retrieval problems, are the next steps to be strongly considered

    Comparing Fusion Techniques for the ImageCLEF 2013 Medical Case Retrieval Task

    Get PDF
    Retrieval systems can supply similar cases with a proven diagnosis to a new example case under observation to help clinicians during their work. The ImageCLEFmed evaluation campaign proposes a framework where research groups can compare case-based retrieval approaches. This paper focuses on the case-based task and adds results of the compound figure separation and modality classification tasks. Several fusion approaches are compared to identify the approaches best adapted to the heterogeneous data of the task. Fusion of visual and textual features is analyzed, demonstrating that the selection of the fusion strategy can improve the best performance on the case-based retrieval task

    Recuperação de informação multimodal em repositórios de imagem médica

    Get PDF
    The proliferation of digital medical imaging modalities in hospitals and other diagnostic facilities has created huge repositories of valuable data, often not fully explored. Moreover, the past few years show a growing trend of data production. As such, studying new ways to index, process and retrieve medical images becomes an important subject to be addressed by the wider community of radiologists, scientists and engineers. Content-based image retrieval, which encompasses various methods, can exploit the visual information of a medical imaging archive, and is known to be beneficial to practitioners and researchers. However, the integration of the latest systems for medical image retrieval into clinical workflows is still rare, and their effectiveness still show room for improvement. This thesis proposes solutions and methods for multimodal information retrieval, in the context of medical imaging repositories. The major contributions are a search engine for medical imaging studies supporting multimodal queries in an extensible archive; a framework for automated labeling of medical images for content discovery; and an assessment and proposal of feature learning techniques for concept detection from medical images, exhibiting greater potential than feature extraction algorithms that were pertinently used in similar tasks. These contributions, each in their own dimension, seek to narrow the scientific and technical gap towards the development and adoption of novel multimodal medical image retrieval systems, to ultimately become part of the workflows of medical practitioners, teachers, and researchers in healthcare.A proliferação de modalidades de imagem médica digital, em hospitais, clínicas e outros centros de diagnóstico, levou à criação de enormes repositórios de dados, frequentemente não explorados na sua totalidade. Além disso, os últimos anos revelam, claramente, uma tendência para o crescimento da produção de dados. Portanto, torna-se importante estudar novas maneiras de indexar, processar e recuperar imagens médicas, por parte da comunidade alargada de radiologistas, cientistas e engenheiros. A recuperação de imagens baseada em conteúdo, que envolve uma grande variedade de métodos, permite a exploração da informação visual num arquivo de imagem médica, o que traz benefícios para os médicos e investigadores. Contudo, a integração destas soluções nos fluxos de trabalho é ainda rara e a eficácia dos mais recentes sistemas de recuperação de imagem médica pode ser melhorada. A presente tese propõe soluções e métodos para recuperação de informação multimodal, no contexto de repositórios de imagem médica. As contribuições principais são as seguintes: um motor de pesquisa para estudos de imagem médica com suporte a pesquisas multimodais num arquivo extensível; uma estrutura para a anotação automática de imagens; e uma avaliação e proposta de técnicas de representation learning para deteção automática de conceitos em imagens médicas, exibindo maior potencial do que as técnicas de extração de features visuais outrora pertinentes em tarefas semelhantes. Estas contribuições procuram reduzir as dificuldades técnicas e científicas para o desenvolvimento e adoção de sistemas modernos de recuperação de imagem médica multimodal, de modo a que estes façam finalmente parte das ferramentas típicas dos profissionais, professores e investigadores da área da saúde.Programa Doutoral em Informátic

    Combining Textual and Visual Information for Image Retrieval in the Medical Domain

    Get PDF
    In this article we have assembled the experience obtained from our participation in the imageCLEF evaluation task over the past two years. Exploitation on the use of linear combinations for image retrieval has been attempted by combining visual and textual sources of images. From our experiments we conclude that a mixed retrieval technique that applies both textual and visual retrieval in an interchangeably repeated manner improves the performance while overcoming the scalability limitations of visual retrieval. In particular, the mean average precision (MAP) has increased from 0.01 to 0.15 and 0.087 for 2009 and 2010 data, respectively, when content-based image retrieval (CBIR) is performed on the top 1000 results from textual retrieval based on natural language processing (NLP)

    Use Case Oriented Medical Visual Information Retrieval & System Evaluation

    Get PDF
    Large amounts of medical visual data are produced daily in hospitals, while new imaging techniques continue to emerge. In addition, many images are made available continuously via publications in the scientific literature and can also be valuable for clinical routine, research and education. Information retrieval systems are useful tools to provide access to the biomedical literature and fulfil the information needs of medical professionals. The tools developed in this thesis can potentially help clinicians make decisions about difficult diagnoses via a case-based retrieval system based on a use case associated with a specific evaluation task. This system retrieves articles from the biomedical literature when querying with a case description and attached images. This thesis proposes a multimodal approach for medical case-based retrieval with focus on the integration of visual information connected to text. Furthermore, the ImageCLEFmed evaluation campaign was organised during this thesis promoting medical retrieval system evaluation
    corecore