12 research outputs found

    Optimization of Porous Insert Configuration in a Central Receiver Tube for Heat Transfer Enhancement

    Get PDF
    AbstractIn this paper, the heat transfer enhancement for convection heat transfer of turbulent flow in a central receiver tube filled with porous medium under non-uniform circumferential heat flux was numerically investigated. The effects of some parameters of porous medium (layout, thermal conductivity and porosity) and the Reynolds number (Re) on the thermal and thermo-hydraulic performance were discussed. The results showed that the enhanced receiver tube (ERT) with down-filling porous inserts and in-filling porous inserts have good thermal performance when the ratio of thermal conductivity of porous medium to working fluid (λs/λf) is less than 1,000. The ERT with out-filling porous inserts and up-filling porous inserts have good thermo-hydraulic performance when λs/λf >100. The porosity (ɛ) and Re also affect the thermal and thermo-hydraulic performance, the Nusselt number (Nu) and performance evaluation criteria (PEC) of heat transfer enhancement under constant pumping power of most kinds of ERTs decrease with the increase of ɛ, but the PEC of the ERT with in-filling porous inserts increases with the increase of ɛ. The Nu of all kinds of ERTs increases with the increase of Re, but the PEC decreases with the increase of Re

    Rotor design optimization using a free wake analysis

    Get PDF
    The aim of this effort was to develop a comprehensive performance optimization capability for tiltrotor and helicopter blades. The analysis incorporates the validated EHPIC (Evaluation of Hover Performance using Influence Coefficients) model of helicopter rotor aerodynamics within a general linear/quadratic programming algorithm that allows optimization using a variety of objective functions involving the performance. The resulting computer code, EHPIC/HERO (HElicopter Rotor Optimization), improves upon several features of the previous EHPIC performance model and allows optimization utilizing a wide spectrum of design variables, including twist, chord, anhedral, and sweep. The new analysis supports optimization of a variety of objective functions, including weighted measures of rotor thrust, power, and propulsive efficiency. The fundamental strength of the approach is that an efficient search for improved versions of the baseline design can be carried out while retaining the demonstrated accuracy inherent in the EHPIC free wake/vortex lattice performance analysis. Sample problems are described that demonstrate the success of this approach for several representative rotor configurations in hover and axial flight. Features that were introduced to convert earlier demonstration versions of this analysis into a generally applicable tool for researchers and designers is also discussed

    Linear convergence of accelerated conditional gradient algorithms in spaces of measures

    Full text link
    A class of generalized conditional gradient algorithms for the solution of optimization problem in spaces of Radon measures is presented. The method iteratively inserts additional Dirac-delta functions and optimizes the corresponding coefficients. Under general assumptions, a sub-linear O(1/k)\mathcal{O}(1/k) rate in the objective functional is obtained, which is sharp in most cases. To improve efficiency, one can fully resolve the finite-dimensional subproblems occurring in each iteration of the method. We provide an analysis for the resulting procedure: under a structural assumption on the optimal solution, a linear O(ζk)\mathcal{O}(\zeta^k) convergence rate is obtained locally.Comment: 30 pages, 7 figure

    Numerical Analysis of Transient Teflon Ablation with a Domain Decomposition Finite Volume Implicit Method on Unstructured Grids

    Get PDF
    This work investigates numerically the process of Teflon ablation using a finite-volume discretization, implicit time integration and a domain decomposition method in three-dimensions. The interest in Teflon stems from its use in Pulsed Plasma Thrusters and in thermal protection systems for reentry vehicles. The ablation of Teflon is a complex process that involves phase transition, a receding external boundary where the heat flux is applied, an interface between a crystalline and amorphous (gel) phase and a depolymerization reaction which happens on and beneath the ablating surface. The mathematical model used in this work is based on a two-phase model that accounts for the amorphous and crystalline phases as well as the depolymerization of Teflon in the form of an Arrhenius reaction equation. The model accounts also for temperature-dependent material properties, for unsteady heat inputs and boundary conditions in 3D. The model is implemented in 3D domains of arbitrary geometry with a finite volume discretization on unstructured grids. The numerical solution of the transient reaction-diffusion equation coupled with the Arrhenius-based ablation model advances in time using implicit Crank-Nicolson scheme. For each time step the implicit time advancing is decomposed into multiple sub-problems by a domain decomposition method. Each of the sub-problems is solved in parallel by Newton-Krylov non-linear solver. After each implicit time-advancing step, the rate of ablation and the fraction of depolymerized material are updated explicitly with the Arrhenius-based ablation model. After the computation, the surface of ablation front and the melting surface are recovered from the scalar field of fraction of depolymerized material and the fraction of melted material by post-processing. The code is verified against analytical solutions for the heat diffusion problem and the Stefan problem. The code is validated against experimental data of Teflon ablation. The verification and validation demonstrates the ability of the numerical method in simulating three dimensional ablation of Teflon

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The Models and Analysis of Vocal Emissions with Biomedical Applications (MAVEBA) workshop came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the neonate to the adult and elderly. Over the years the initial issues have grown and spread also in other aspects of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years always in Firenze, Italy

    A new adaptive multiscale finite element method with applications to high contrast interface problems

    Get PDF
    In this thesis we show that the finite element error for the high contrast elliptic interface problem is independent of the contrast in the material coefficient under certain assumptions. The error estimate is proved using a particularly technical proof with construction of a specific function from the finite dimensional space of piecewise linear functions. We review the multiscale finite element method of Chu, Graham and Hou to give clearer insight. We present some generalisations to extend their work on a priori contrast independent local boundary conditions, which are then used to find multiscale basis functions by solving a set of local problems. We make use of their regularity result to prove a new relative error estimate for both the standard finte element method and the multiscale finite element method that is completely coefficient independent. The analytical results we explore in this thesis require a complicated construction. To avoid this we present an adaptive multiscale finite element method as an enhancement to the adaptive local-global method of Durlofsky, Efendiev and Ginting. We show numerically that this adaptive method converges optimally as if the coefficient were smooth even in the presence of singularities as well as in the case of a realisation of a random field. The novel application of this thesis is where the adaptive multiscale finite element method has been applied to the linear elasticity problem arising from the structural optimisation process in mechanical engineering. We show that a much smoother sensitivity profile is achieved along the edges of a structure with the adaptive method and no additional heuristic smoothing techniques are needed. We finally show that the new adaptive method can be efficiently implemented in parallel and the processing time scales well as the number of processors increases. The biggest advantage of the multiscale method is that the basis functions can be repeatedly used for additional problems with the same high contrast material coefficient.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Measurement and optimisation of beam quality from laser wakefield accelerators

    Get PDF
    This thesis concerns experimental work in the field of laser wakefield acceleration, with a focus on the diagnosis and optimisation of the electron beam quality. The density length parameter space of a 5TW, 0.25J laser driven wakefield accelerator was characterised. Measurements of the electron beams and x-ray pulses were reported, and optimal parameters for various metrics were found. Beam-driven acceleration was identified as the mechanism that produced energies above 211MeV, and the peak x-ray brilliance was 4.2+/-0.8E20 ph/s/mm^2/mrad^2/0.1%BW^-1. Both the electron energy and the x-ray brilliance are significantly higher than literature values using comparable laser powers. Separately, the parameter scans were used to measure an extended dephasing length of the laser-accelerated beam, attributable to semi-localised depletion of the driving laser pulse, and measure the pulse evolution rate and injection length as a function of plasma density, which was found to be slower than would be expected when only considering the longitudinal evolution. An emittance diagnostic was developed using a beam mask and electron spectrometer. This was used to measure the spectrally resolved normalised emittance of GeV beams, produced by ionisation injection in a gas jet using a 165TW, 7.4J laser. Average emittance values as low as 4um were measured, which are the lowest emittances recorded using a beam mask technique in the literature, at energies that are close to an order of magnitude higher than other beam mask methods. The effect of density ramps and plasma mirrors on electron beam divergence was measured in the context of staged wakefield acceleration, using a 242TW, 11J laser. Termination of an acceleration stage with a plasma mirror was found to increase total beam divergence from 3.38+/-0.07mrad to 6.13+/-0.13mrad, and the effect was observed to persist at high energies, up to 2.2GeV. Using simulations and numerical models, the presence of the density ramp was shown to have a divergence-reducing effect with a magnitude that matched the experiment. The 10^3 tesla magnetic fields generated in plasma mirrors were investigated using simulations, and the effect of these fields on the electron beam was quantified. Compared to normal incidence, a 45 degree angle of the plasma mirror to the beam axis was found to reduce the integrated magnetic fields inside the mirror, with beneficial effects on electron beam emittance.Open Acces

    Wave dynamics in random, absorptive or laseractive media

    Get PDF
    We consider the behavior of light propagating in dielectrically disordered and energetically nonconservative material. Disorder and energy nonconservation can be dealt with via the use of the mathematical formalism commonly known as the Keldysh technique. We derive in the Keldysh formalism a field theory of light propagation in disordered, nonconservative media. This field theoretical formulation is commonly known as the nonlinear sigma model. We also show how to calculate physical quantities like correlation functions from the sigma model, and how a source term can be included in the action of the field theory. We apply the derived field theory to the calculation of full counting statistics. We derive a generating functional for the cumulants of energy transmitted through a weakly nonconservative one-dimensional disordered system. We find fluctuations of transmittance which is in accordance to Dorokhov’s distribution of transmission coefficients. Our numerical results also agree quantitatively with previous diagrammatic results of low order cumulants. We apply the field theoretical formalism to random lasing. We calculate the photonic distribution function. We find that the distribution function obeys a nonlocal Fisher equation. Finally we consider the effect of the vector nature of light on wave properties, specifically whether polarization increases or decreases the propensity of light waves in disordered dielectric media to become localized (Anderson localization).We map the light polarization to a “pseudospin” degree of freedom which we then treat with techniques adapted from classical studies of electronic spin. We find that the polarization of light waves does in fact contribution to a diminished probability of return to the origin, the value of which determines of course the ease for the occurrence of Anderson localization
    corecore