23,308 research outputs found

    Analysis of the effect of mobile terminal speed on WLAN/3G vertical handovers

    Get PDF
    Proceedings of IEEE Global Telecommunications Conference, GLOBECOM '06, San Francisco, California, 27 november - 1 december, 2006.WLAN hot-spots are becoming widely spread. This, combined with the availability of new multi-mode terminals integrating heterogeneous technologies, opens new business opportunities for mobile operators. Scenarios in which 3G coverage is complemented by WLAN deployments are becoming available. Thus, true all-IP based networks are ready to offer a new variety of services across heterogeneous access. However, to achieve this, some aspects still need to be analyzed. In particular, the effect of the terminal speed on the detection and selection process of the preferred access network is not yet well understood. In fact, efficiency of vertical handovers depends on the appropriate configuration of mobile devices. In this paper we present a simulation study of handover performance between 3G and WLAN access networks showing the impact of mobile users’ speed. The mobile devices are based on the IEEE 802.21 cross layer architecture and use WLAN signal level thresholds as handover criteria. A novel algorithm to dynamically adjust terminals’ configuration is presented.Publicad

    A Unified Mobility Management Architecture for Interworked Heterogeneous Mobile Networks

    Get PDF
    The buzzword of this decade has been convergence: the convergence of telecommunications, Internet, entertainment, and information technologies for the seamless provisioning of multimedia services across different network types. Thus the future Next Generation Mobile Network (NGMN) can be envisioned as a group of co-existing heterogeneous mobile data networking technologies sharing a common Internet Protocol (IP) based backbone. In such all-IP based heterogeneous networking environments, ongoing sessions from roaming users are subjected to frequent vertical handoffs across network boundaries. Therefore, ensuring uninterrupted service continuity during session handoffs requires successful mobility and session management mechanisms to be implemented in these participating access networks. Therefore, it is essential for a common interworking framework to be in place for ensuring seamless service continuity over dissimilar networks to enable a potential user to freely roam from one network to another. For the best of our knowledge, the need for a suitable unified mobility and session management framework for the NGMN has not been successfully addressed as yet. This can be seen as the primary motivation of this research. Therefore, the key objectives of this thesis can be stated as: To propose a mobility-aware novel architecture for interworking between heterogeneous mobile data networks To propose a framework for facilitating unified real-time session management (inclusive of session establishment and seamless session handoff) across these different networks. In order to achieve the above goals, an interworking architecture is designed by incorporating the IP Multimedia Subsystem (IMS) as the coupling mediator between dissipate mobile data networking technologies. Subsequently, two different mobility management frameworks are proposed and implemented over the initial interworking architectural design. The first mobility management framework is fully handled by the IMS at the Application Layer. This framework is primarily dependant on the IMS’s default session management protocol, which is the Session Initiation Protocol (SIP). The second framework is a combined method based on SIP and the Mobile IP (MIP) protocols, which is essentially operated at the Network Layer. An analytical model is derived for evaluating the proposed scheme for analyzing the network Quality of Service (QoS) metrics and measures involved in session mobility management for the proposed mobility management frameworks. More precisely, these analyzed QoS metrics include vertical handoff delay, transient packet loss, jitter, and signaling overhead/cost. The results of the QoS analysis indicates that a MIP-SIP based mobility management framework performs better than its predecessor, the Pure-SIP based mobility management method. Also, the analysis results indicate that the QoS performances for the investigated parameters are within acceptable levels for real-time VoIP conversations. An OPNET based simulation platform is also used for modeling the proposed mobility management frameworks. All simulated scenarios prove to be capable of performing successful VoIP session handoffs between dissimilar networks whilst maintaining acceptable QoS levels. Lastly, based on the findings, the contributions made by this thesis can be summarized as: The development of a novel framework for interworked heterogeneous mobile data networks in a NGMN environment. The final design conveniently enables 3G cellular technologies (such as the Universal Mobile Telecommunications Systems (UMTS) or Code Division Multiple Access 2000 (CDMA2000) type systems), Wireless Local Area Networking (WLAN) technologies, and Wireless Metropolitan Area Networking (WMAN) technologies (e.g., Broadband Wireless Access (BWA) systems such as WiMAX) to interwork under a common signaling platform. The introduction of a novel unified/centralized mobility and session management platform by exploiting the IMS as a universal coupling mediator for real-time session negotiation and management. This enables a roaming user to seamlessly handoff sessions between different heterogeneous networks. As secondary outcomes of this thesis, an analytical framework and an OPNET simulation framework are developed for analyzing vertical handoff performance. This OPNET simulation platform is suitable for commercial use

    Stochastic user behaviour modelling and network simulation for resource management in cooperation with mobile telecommunications and broadcast networks

    Get PDF
    The latest generations of telecommunications networks have been designed to deliver higher data rates than widely used second generation telecommunications networks, providing flexible communication capabilities that can deliver high quality video images. However, these new generations of telecommunications networks are interference limited, impairing their performance in cases of heavy traffic and high usage. This limits the services offered by a telecommunications network operator to those that the operator is confident their network can meet the demand for. One way to lift this constraint would be for the mobile telecommunications network operator to obtain the cooperation of a broadcast network operator so that during periods when the demand for the service is too high for the telecommunications network to meet, the service can be transferred to the broadcast network. In the United Kingdom the most recent telecommunications networks on the market are third generation UMTS networks while the terrestrial digital broadcast networks are DVB-T networks. This paper proposes a way for UMTS network operators to forecast the traffic associated with high demand services intended to be deployed on the UMTS network and when demand requires to transfer it to a cooperating DVB-T network. The paper aims to justify to UMTS network operators the use of a DVB-T network as a support for a UMTS network by clearly showing how using a DVB-T network to support it can increase the revenue generated by their network

    VANET addressing scheme incorporating geographical information in standard IPv6 header

    Get PDF

    Video Streaming in Evolving Networks under Fuzzy Logic Control

    Get PDF
    • 

    corecore