223 research outputs found

    Live migration of user environments across wide area networks

    Get PDF
    A complex challenge in mobile computing is to allow the user to migrate her highly customised environment while moving to a different location and to continue work without interruption. I motivate why this is a highly desirable capability and conduct a survey of the current approaches towards this goal and explain their limitations. I then propose a new architecture to support user mobility by live migration of a user’s operating system instance over the network. Previous work includes the Collective and Internet Suspend/Resume projects that have addressed migration of a user’s environment by suspending the running state and resuming it at a later time. In contrast to previous work, this work addresses live migration of a user’s operating system instance across wide area links. Live migration is done by performing most of the migration while the operating system is still running, achieving very little downtime and preserving all network connectivity. I developed an initial proof of concept of this solution. It relies on migrating whole operating systems using the Xen virtual machine and provides a way to perform live migration of persistent storage as well as the network connections across subnets. These challenges have not been addressed previously in this scenario. In a virtual machine environment, persistent storage is provided by virtual block devices. The architecture supports decentralized virtual block device replication across wide area network links, as well as migrating network connection across subnetworks using the Host Identity Protocol. The proposed architecture is compared against existing solutions and an initial performance evaluation of the prototype implementation is presented, showing that such a solution is a promising step towards true seamless mobility of fully fledged computing environments

    Infrastructure sharing of 5G mobile core networks on an SDN/NFV platform

    Get PDF
    When looking towards the deployment of 5G network architectures, mobile network operators will continue to face many challenges. The number of customers is approaching maximum market penetration, the number of devices per customer is increasing, and the number of non-human operated devices estimated to approach towards the tens of billions, network operators have a formidable task ahead of them. The proliferation of cloud computing techniques has created a multitude of applications for network services deployments, and at the forefront is the adoption of Software-Defined Networking (SDN) and Network Functions Virtualisation (NFV). Mobile network operators (MNO) have the opportunity to leverage these technologies so that they can enable the delivery of traditional networking functionality in cloud environments. The benefit of this is reductions seen in the capital and operational expenditures of network infrastructure. When going for NFV, how a Virtualised Network Function (VNF) is designed, implemented, and placed over physical infrastructure can play a vital role on the performance metrics achieved by the network function. Not paying careful attention to this aspect could lead to the drastically reduced performance of network functions thus defeating the purpose of going for virtualisation solutions. The success of mobile network operators in the 5G arena will depend heavily on their ability to shift from their old operational models and embrace new technologies, design principles and innovation in both the business and technical aspects of the environment. The primary goal of this thesis is to design, implement and evaluate the viability of data centre and cloud network infrastructure sharing use case. More specifically, the core question addressed by this thesis is how virtualisation of network functions in a shared infrastructure environment can be achieved without adverse performance degradation. 5G should be operational with high penetration beyond the year 2020 with data traffic rates increasing exponentially and the number of connected devices expected to surpass tens of billions. Requirements for 5G mobile networks include higher flexibility, scalability, cost effectiveness and energy efficiency. Towards these goals, Software Defined Networking (SDN) and Network Functions Virtualisation have been adopted in recent proposals for future mobile networks architectures because they are considered critical technologies for 5G. A Shared Infrastructure Management Framework was designed and implemented for this purpose. This framework was further enhanced for performance optimisation of network functions and underlying physical infrastructure. The objective achieved was the identification of requirements for the design and development of an experimental testbed for future 5G mobile networks. This testbed deploys high performance virtualised network functions (VNFs) while catering for the infrastructure sharing use case of multiple network operators. The management and orchestration of the VNFs allow for automation, scalability, fault recovery, and security to be evaluated. The testbed developed is readily re-creatable and based on open-source software

    Data Center Server Virtualization Solution Using Microsoft Hyper-V

    Get PDF
    Cloud Computing has helped businesses scale within minutes and take their services to their customers much faster. Virtualization is considered the core-computing layer of a cloud setup. All the problems a traditional data center environment like space, power, resilience, centralized data management, and rapid deployment of servers as per business need have been solved with the introduction of Hyper-V (a server virtualization solution from Microsoft). Now companies can deploy multiple servers and applications with just a click and they can also centrally manage the data storage. This paper focuses on the difference between VMware and Hyper virtualization platforms and building a virtualized infrastructure solution using Hyper

    Design and deployment of real scenarios of TCP/IP networking and it security for software defined networks with next generation tools

    Get PDF
    This thesis is about NSX, a Software Defined tool provided by VMware, to deploy and design virtual networks. The recent growth in the marked pushed companies to invest and use this kind of technology. This thesis explains three main NSX concepts and the basis to perform some deployments. Some use cases regarding networking and security are included in this document. The purpose of these use cases is to use them in real scenarios, which is the main purpose of the thesis. The budget to deploy these use cases is included as an estimation about how much a project like this would cost for the company. Finally, there are some conclusions and tips for best practices

    An Architecture for Reliable Encapsulation Endpoints using Commodity Hardware

    Get PDF
    Customized hardware is expensive and making software reliable is difficult to achieve as complexity increases. Recent trends towards computing in the cloud have highlighted the importance of being able to operate continuously in the presence of unreliable hardware and, as services continue to grow in complexity, it is necessary to build systems that are able to operate not only in the presence of unreliable hardware but also failure-vulnerable software. This thesis describes a newly developed approach for building networking software that exposes a reliable encapsulation service to clients and runs on unreliable, commodity hardware without substantially increasing the implementation complexity. The proposal was implemented in an existing encapsulation system, and experimental analysis has shown that packets are lost for between 200 ms and 1 second during a failover, and that a failover adds less than 5 seconds to the total download time of several sizes of files. The approach described in this thesis demonstrates the viability of building high availability systems using commodity components and failure-vulnerable server software

    VM Selection Process Management for Live Migration in Cloud Data Centers

    Get PDF
    With immense success and fast growth within the past few years, cloud computing has been established as the dominant computing paradigm in information technology (IT) industry, wherein it utilizes dissipated resource benefits and supports resource sharing and time access flexibility. The proliferation of cloud computing has resulted in the establishment of large-scale data centers across the world, consisting of hundreds of thousands, even millions of servers. The emerging cloud computing paradigm provides administrators and IT organizations with considerable freedom to dynamically migrate virtualized computing services among physical servers in cloud data centers. Normally, these data centers incur very high investment and operating costs for the computing and network devices as well as for the energy consumption. Virtualization and virtual machine (VM) migration offers significant benefits such as load balancing, server consolidation, online maintenance and proactive fault tolerance along data centers. VM migration relies on how to determine the trigger condition of VM migration, select the target virtual machine, and choose the destination node. As a result, dynamic VM migration in the scope of resource management is becoming a crucial issue to emphasize on optimal resource utilization, maximum throughput, minimum response time, enhancing scalability, avoiding over-provisioning of resources and prevention of overload to make cloud computing successful. Intelligent host underload/overload detection, VM selection, and VM placement are the primary means to address VM migration issue. Therefore, these three problems are considered to be the most common tasks in VM migration. This thesis presents novel techniques, models, and algorithms, for distributed dynamic consolidation of virtual machines in cloud data centers. The goal is to improve the utilization of computing resources and reduce energy consumption under workload independent quality of service constraints. The proposed approaches are distributed and efficient in managing the energy-performance trade-off
    • …
    corecore