46 research outputs found

    Vaness: DNS em redes veiculares para suporte a utilizadores itinerantes

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaVehicular networks, also known as VANETs, are an ad-hoc network formed by vehicles and road-side units. Nowadays they have been attracting big interest both from researchers as from the automotive industry. With the upcoming of automotive specific operating systems and self-driving cars, the use of applications on vehicles and the integration with common mobile devices is becoming a big part of VANETs. Although many advances have been made on this field, there is still a big discrepancy between the communication layer services provided by VANETs and the user level services, namely those accessible through mobile applications on other networks and technologies. Users and developers are accustomed to user-to-user or user-tobusiness communication without explicit concerns related with the available communication transport layer. Such is not possible in VANETs since people may use more than one vehicle. However, to send a message to a specific user in these networks, there is a need to know the ID of the vehicle where the user is, meaning that there is a lack of services that map each individual user to VANETs endpoint (vehicle identification). This dissertation work proposes VANESS, a naming service as a resource to support user-to-user communication within a heterogeneous scenario comprising typical ISP scenario and VANETs focused on mobile devices. The proposed system is able to map the user to an end point either locally (i.e. there is not internet connection at all), online (i.e. system is not in a vehicular network but has direct internet connection) and using a gateway (i.e. the system is in a vehicular network where some of the nodes have internet access and will act as a gateway). VANESS was fully implemented on android OS with results proving his viability, and partially on iOS showing its multiplatform capabilities.As redes veiculares, também conhecidas por VANETs, são redes ad-hoc formadas por veículos e road-site units. Hoje em dia estas redes têm atraído bastante interesse tanto por parte de investigadores como da indústria automóvel. Com o aparecimento de sistemas operativos especificamente dedicados a automóveis e carros de condução autónoma, o uso de aplicações em veículos e a integração com dipositivos móveis está-se a tornar uma parte cada vez maior nas VANETs. Apesar dos grandes avanços tecnológicos realizados nesta área, ainda existe uma grande discrepância entre os serviços de camada de comunicação disponibilizados pelas VANETs e os serviços ao nível do utilizador, nomeadamente aqueles acessíveis a partir de aplicações móveis noutras redes e tecnologias. Os utilizadores e programadores estão habituados a interações utilizador-utilizador ou utilizadorempresa sem preocupações explícitas sobre a camada de transporte em causa. Isto não é possível em redes VANETs, uma vez que cada pessoa pode usar vários veículos. No entanto, uma mensagem para ser enviada para um utilizador específico através destas redes precisa do indentificador do veículo onde tal utilizador está, ou seja, existe uma falta de serviços que mapeiem cada utilizador individual a nós na VANET (identificação do veículo). O trabalho desta dissertação propõe o sistema VANESS, um serviço de nomes (naming service) disponibilizado como um recurso para suporte a comunicação utilizador-a-utilizador num cenário heterogéneo englobando o típico ISP e VANETs focadas em dispositivos móveis. O sistema proposto é capaz de mapear um utilizador a um veículo tanto localmente (i.e. não existe ligação à internet), online (i.e. o sistema não está numa rede veicular mas tem acesso direto à internet) e usando um gateway (i.e. o sistema está numa rede veicular onde algum nó tem acesso à internet e irá servir como gateway). VANESS foi integralmente implementado em Android OS, onde os resultados dos testes mostram que é um sistema viável, e parcialmente em iOS mostrando a sua capacidade para multi-plataformas

    Cloud Based IP Multimedia Subsystem (IMS) Architecture to Integrate Vehicular Ad Hoc Network (VANET) and IMS

    Get PDF
    RÉSUMÉ Les réseaux Ad Hoc véhiculaires (VANET) représentent une technologie spéciale, dans la catégorie des réseaux ad hoc sans fils. Ils visent la sécurité routière, une plus grande efficacité et une meilleure organisation au sein des systèmes de transport. Ils favorisent l’avènement de nouvelles applications relatives à l’ingénierie, la gestion de trafic, la dissémination d’informations d’urgence pour éviter les situations critiques, le confort et le divertissement, ainsi que plusieurs autres «applications utilisateur». Le sous-système multimédia IP (IP Multimedia Subsystem, IMS), a été standardisé par le projet «Third Generation Partnership Project» (3GPP) pour les réseaux hétérogènes avec un support de la qualité de service. Cette plateforme a été proposée dans le but d’offrir aux utilisateurs finaux des services multimédia tels que la voix, les données et la vidéo, la facturation ainsi que l’intégration des services tout-IP. Avec l’avènement de IMS, il est désirable d’offrir aux utilisateurs des réseaux véhiculaires (VANET), un accès aux services de ce sous-système. Cependant, les caractéristiques de ces réseaux posent des difficultés majeures pour le contrôle des performances des services IMS. Par ailleurs, le «réseau cœur » de IMS présente aussi des limitations telles que le contrôle centralisé, la faible efficacité et une faible évolutivité au niveau des équipements du réseau cœur en comparaison aux infrastructures de réseau utilisant le Cloud Computing. Le Cloud Computing est un nouveau paradigme des technologies de l’information, offrant des ressources extensibles dynamiquement, souvent au moyen de machines virtuelles et accessibles en tant que services sur Internet. La migration de l’IMS au sein du Cloud peut permettre d’améliorer les performances de l’infrastructure IMS. Ce projet propose une architecture novatrice d’intégration des réseaux VANET, IMS et le Cloud Computing.----------ABSTRACT Vehicular Ad Hoc network (VANET) is a special technology in wireless ad hoc networks. It can be used to provide road safety, efficiency and traffic organization in transportation system. Thus, new applications arise in several fields such as traffic engineering, traffic management, dissemination of emergency information in order to avoid critical situations, comfort, entertainment and other user applications. IP multimedia Subsystem (IMS) is a subsystem, standardized with Third Generation Partnership Project (3GPP). The IMS supports heterogeneous networking with Quality-of-Service (QoS) policy. The goal of this platform is to integrate All-IP services and to provide final user with multimedia services such as voice, data and video with appropriate billing mechanisms. With the advent of the IP Multimedia Subsystem, it is desirable to provide VANET end-users with IMS services. However, characteristics of VANET cause major challenges to control the performance of IMS services. On the other hand, the traditional IMS core network faces a set of problems such as centralized control, low efficiency and poor scalability of core equipment, compared with the IT environment using Cloud Computing. Cloud Computing is an emerging paradigm in the field of information technology. In this new paradigm, dynamically scalable and often virtualized resources are provided as services over the Internet. The migration of IMS to cloud can improve its performance. This project proposes an innovative architecture in order to integrate VANET, IMS and Cloud Computing

    Connected Vehicles: from CAN bus to IP-based In-Vehicle Networks

    Get PDF
    Il settore automotive, negli ultimi vent’anni, è stato oggetto di importanti sviluppi tecnologici, caratterizzati principalmente dall’evoluzione dei settori dell’elettronica e delle telecomunicazioni. Questo elaborato si pone come obiettivo lo studio delle tecnologie che hanno permesso l’introduzione di sistemi elettronici avanzati all’interno dei veicoli, e di come queste si siano evolute negli anni. Vengono quindi presentate le moderne idee di Connected Vehicle e di In-Vehicle Networks (IVN), nonché i principali protocolli di comunicazione che ne hanno caratterizzato l’evoluzione. Si procede poi analizzando il Controller Area Network (CAN bus), le reti veicolari IP-based ed infine il dispositivo che permette l’implementazione di reti eterogenee, l’Automotive Gateway

    Analysis, design and experimental evaluation of connectivity management in heterogeneous wireless environments

    Get PDF
    Mención Internacional en el título de doctorThe future of network communications is mobile as many more users demand for ubiquitous connectivity. Wireless has become the primary access technology or even the only one, leading to an explosion in traffic demand. This challenges network providers to manage and configure new requirements without incrementing costs in the same amount. In addition to the growth in the use of mobile devices, there is a need to operate simultaneously different access technologies. As well, the great diversity of applications and the capabilities of mobile terminals makes possible for us to live in a hyper-connected world and offers new scenarios. This heterogeneity poses great challenges that need to be addressed to offer better performance and seamless experience to the final user. We need to orchestrate solutions to increase flexibility and empower interoperability. Connectivity management is handled from different angles. In the network stack, mobility is more easily handled by IP mobility protocols, since IP is the common layer between the different access technologies and the application diversity. From the end-user perspective, the connection manager is in charge of handling connectivity issues in mobile devices, but it is an unstandardized entity so its performance is heavily implementation-dependent. In this thesis we explore connectivity management from different angles. We study mobility protocols as they are part of our proposed solutions. In most of the cases we include an experimental evaluation of performance with 3G and IEEE 802.11 as the main technologies. We consider heterogeneous scenarios, with several access technologies where mobile devices have also several network interfaces. We evaluate how connectivity is handled as well as its influence in a handover. Based on the analysis of real traces from a cellular network, we confirm the suitability of more efficient mobility management. Moreover, we propose and evaluate three different solutions for providing mobility support in three different heterogeneous scenarios. We perform an experimental evaluation of a vehicular route optimization for network mobility, reporting on the challenges and lessons learned in such a complicated networking environment. We propose an architecture for supporting mobility and enhance handover in a passive optical network deployment. In addition, we design and deploy a mechanism for mobility management based on software-defined networking.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Arturo Azcorra Saloña.- Secretario: Ramón Agüero Calvo.- Vocal: Daniel Nunes Coruj

    Connectivity and Data Transmission over Wireless Mobile Systems

    Get PDF
    We live in a world where wireless connectivity is pervasive and becomes ubiquitous. Numerous devices with varying capabilities and multiple interfaces are surrounding us. Most home users use Wi-Fi routers, whereas a large portion of human inhabited land is covered by cellular networks. As the number of these devices, and the services they provide, increase, our needs in bandwidth and interoperability are also augmented. Although deploying additional infrastructure and future protocols may alleviate these problems, efficient use of the available resources is important. We are interested in the problem of identifying the properties of a system able to operate using multiple interfaces, take advantage of user locations, identify the users that should be involved in the routing, and setup a mechanism for information dissemination. The challenges we need to overcome arise from network complexity and heterogeneousness, as well as the fact that they have no single owner or manager. In this thesis I focus on two cases, namely that of utilizing "in-situ" WiFi Access Points to enhance the connections of mobile users, and that of establishing "Virtual Access Points" in locations where there is no fixed roadside equipment available. Both environments have attracted interest for numerous related works. In the first case the main effort is to take advantage of the available bandwidth, while in the second to provide delay tolerant connectivity, possibly in the face of disasters. Our main contribution is to utilize a database to store user locations in the system, and to provide ways to use that information to improve system effectiveness. This feature allows our system to remain effective in specific scenarios and tests, where other approaches fail

    Minimally Invasive Solutions to Challenges Posed by Mobility Changes

    Get PDF
    Today, things have changed radically. As network technologies have proliferated and evolved, the components of, and participants in, computerized systems have become increasingly decoupled. Users travel and commute while connecting to their office computer or home media server. Hardware devices may be carried by users, move on their own, or reside in data centers, never to be seen or touched by end-users. Even operating systems (OSes) and applications may now migrate across the network while executing, thanks to advances in virtualization that are only just beginning to remake the computing landscape. The decoupling of users, devices, and software has invalidated properties that enabled desired functionality: resulting in compromised function. Power interfaces utilize physi- cal user interactions to determine when transitions between high and lower power states should occur; what happens when users are no longer physically present? Operating system execution often relies on components such as CPU and local disk responding with tightly bounded delays; what should be done when the OS itself is in the process of migrating between two separate physical machines? The fundamental question explored by this dissertation is: Can we find highly adoptable solutions to restore desired functionality that has been lost because of changed mobility characteristics? Our emphasis on adoptability stems from pragmatic concerns: if a solution is difficult to adopt, it is highly unlikely to be used. Consequently, while many potential approaches may involve changes to the network itself, our work focuses on modifying end-point behavior. We show that practical solutions implemented solely in software and deployed only on network endpoints can be developed for a wide problem range. We consider concrete challenges arising from user, device, and software mobility changes, affecting sub-disciplines spanning cloud computing, green computing, and wireless networks. Cloud Computing: Users increasingly utilize virtual machine (VM) technology to migrate and replicate OS and software amongst networked hosts. Traditional execution required one VM image copy on each host's local storage. By transitioning to networked execution, dozens, if not hundreds, of VM replicas may now be distributed from a single networked storage location to a commensurately large set of physical machines. As these systems expand, they have come to be plagued by boot storms (and similar problems) caused when networked access to storage becomes a major bottleneck, drastically delaying VM distribution and execution. Can we develop techniques that resolve this network bottleneck without the need for expensive hardware over-provisioning? Green Computing: Remote access technologies have enabled users to travel while still interacting with computational machinery left in the office or home. Yet, energy savings mechanisms have traditionally relied on the activity of attached peripherals to determine power usage. The shift to remote interaction, which bypasses physically attached peripherals, has effectively broken these energy savings mechanisms. Can we build an economic and practical system that accommodates energy efficiency without compromising the fluid remote interactions users have now come to expect? Wireless Computing: Increasingly advanced mobile devices have provoked a shift towards heavy usage of 3G and 4G bandwidth use. Accordingly, the capacity of infrastructure wireless networks becomes increasingly strained. Can we find a way of supplementing this relatively low-latency infrastructure with high-latency, high-bandwidth opportunistic content exchange? In each scenario, we design a solution that aims to strike the proper balance between adoptability and technical efficiency - producing what we believe are rigorous, practical and adoptable solutions

    Actas da 10ª Conferência sobre Redes de Computadores

    Get PDF
    Universidade do MinhoCCTCCentro AlgoritmiCisco SystemsIEEE Portugal Sectio
    corecore