3,071 research outputs found

    Unified Direct-Flux Vector Control for AC Motor Drives

    Get PDF
    The paper introduces a Unified Direct-Flux Vector Control scheme suitable for sinusoidal AC motor drives. The AC drives considered here are Induction Motor, Synchronous Reluctance and synchronous Permanent Magnet motor drives, including Interior and Surface-mounted Permanent Magnet types. The proposed controller operates in stator flux coordinates: the stator flux amplitude is directly controlled by the direct voltage component, while the torque is controlled by regulating the quadrature current component. The unified direct-flux control is particularly convenient when flux-weakening is required, since it easily guarantees maximum torque production under current and voltage limitations. The hardware for control is standard and the control firmware is the same for all the motors under test with the only exception of the magnetic model used for flux estimation at low speed. Experimental results on four different drives are provided, showing the validity of the proposed unified control approac

    Accurate Inverter Error Compensation and Related Self-Commissioning Scheme in Sensorless Induction Motor Drives

    Get PDF
    This paper presents a technique for accurately identifying and compensating the inverter nonlinear voltage errors that deteriorate the performance of sensorless field-oriented controlled drives at low speed. The inverter model is more accurate than the standard signum-based models that are common in the literature, and the self-identification method is based on the feedback signal of the closed-loop flux observer in dc current steady-state conditions. The inverter model can be identified directly by the digital controller at the drive startup with no extra measures other than the motor phase currents and dc-link voltage. After the commissioning session, the compensation does not require to be tuned furthermore and is robust against temperature detuning. The experimental results, presented here for a rotor-flux-oriented SFOC IM drive for home appliances, demonstrate the feasibility of the proposed solution

    Min-Max Predictive Control of a Five-Phase Induction Machine

    Get PDF
    In this paper, a fuzzy-logic based operator is used instead of a traditional cost function for the predictive stator current control of a five-phase induction machine (IM). The min-max operator is explored for the first time as an alternative to the traditional loss function. With this proposal, the selection of voltage vectors does not need weighting factors that are normally used within the loss function and require a cumbersome procedure to tune. In order to cope with conflicting criteria, the proposal uses a decision function that compares predicted errors in the torque producing subspace and in the x-y subspace. Simulations and experimental results are provided, showing how the proposal compares with the traditional method of fixed tuning for predictive stator current control.Ministerio de Economía y Competitividad DPI 2016-76493-C3-1-R y 2014/425Unión Europea DPI 2016-76493-C3-1-R y 2014/425Universidad de Sevilla DPI 2016-76493-C3-1-R y 2014/42

    Direct Flux Field Oriented Control of IPM Drives with Variable DC-Link in the Field-Weakening Region

    Get PDF
    This paper presents the direct flux control of an interior permanent-magnet (IPM) motor drive in the field-weakening region. The output torque is regulated by the coordinated control of the stator flux amplitude and the current component in quadrature with the flux, and it is implemented in the stator flux reference frame. The control system guarantees maximum torque production taking into account voltage and current limits, in particular in case of large dc-link variations. The field-oriented control does not necessarily require an accurate magnetic model of the IPM motor, and it is able to exploit the full inverter voltage at different dc-link levels with no additional voltage control loop. The feasibility of the proposed control method is investigated in discrete-time simulation, then tested on a laboratory rig, and finally implemented on board of an electric scooter prototype. The motor under test is an IPM permanent-magnet-assisted synchronous reluctance machine, with high-saliency and limited permanent-magnet flu

    Predictive current control of asynchronous machines by optimizing the switching moments

    Get PDF
    In this paper a model-based predictive control (MBPC) scheme for the current control of induction machines is presented. The controller directly selects the optimal switch state of the inverter. The proposed scheme uses a longer prediction horizon and a limited amount of optimal switching instants to reduce the average switching frequency. The next iteration of the MBPC-scheme is performed at the established optimal switching instant, as such suppressing the receding horizon property for short time spans. The proposed method is compared to a more conventional MBPC-scheme with a very short prediction horizon. Both simulations and experiments clearly show a significant reduction in average switching frequency. However, with a reduction in switching frequency the torque ripple is increased. To correctly asses the properties of the different schemes, a key performance indicator is proposed that offers a fair and unbiased comparison in terms of switching frequency and torque ripple

    Nonlinear state-observer techniques for sensorless control of automotive PMSM's, including load-torque estimation and saliency

    Get PDF
    The paper investigates various non-linear observer-based rotor position estimation schemes for sensorless control of permanent magnet synchronous motors (PMSMs). Attributes of particular importance to the application of brushless motors in the automotive sector, are considered e.g. implementation cost, accuracy of predictions during load transients, the impact of motor saliency and algorithm complexity. Emphasis is given to techniques based on model linearisation during each sampling period (EKF); feedback-linearisation followed by Luenberger observer design based on the resulting �linear� motor characteristics; and direct design of non-linear observers. Although the benefits of sensorless commutation of PMSMs have been well expounded in the literature, an integrated approach to their design for application to salient machines subject to load torque transients remains outstanding. Furthermore, this paper shows that the inherent characteristics of some non-linear observer structures are particularly attractive since they provide a phase-locked-loop (PLL)-type of configuration that can encourage stable rotor position estimation, thereby enhancing the overall sensorless scheme. Moreover, experimental results show how operation through, and from, zero speed, is readily obtainable. Experimental results are also employed to demonstrate the attributes of each methodology, and provide dynamic and computational performance comparisons

    Observer-based Fault Detection and Diagnosis for Mechanical Transmission Systems with Sensorless Variable Speed Drives

    Get PDF
    Observer based approaches are commonly embedded in sensorless variable speed drives for the purpose of speed control. It estimates system variables to produce errors or residual signals in conjunction with corresponding measurements. The residual signals then are relied to tune control parameters to maintain operational performance even if there are considerable disturbances such as noises and component faults. Obviously, this control strategy outcomes robust control performances. However, it may produce adverse consequences to the system when faults progress to high severity. To prevent the occurrences of such consequences, this research proposes the utilisation of residual signals as detection features to raise alerts for incipient faults. Based on a gear transmission system with a sensorless variable speed drive (VSD), observers for speed, flux and torque are developed for examining their residuals under two mechanical faults: tooth breakage with different degrees of severities and shortage of lubricant at different levels are investigated. It shows that power residual signals can be based on to indicate different faults, showing that the observer based approaches are effective for monitoring VSD based mechanical systems. Moreover, it also shows that these two types fault can be separated based on the dynamic components in the voltage signals

    Control of DFIG based wind generation systems under unbalanced network supply

    Get PDF
    This paper develops a dynamic model and control scheme for DFIG systems to improve the performance and stability under unbalanced grid conditions. A dynamic DFIG model containing the positive and negative sequence components is presented using stator voltage orientation. The proposed model accurately illustrates the active power, reactive power and torque oscillations, and provides a basis for DFIG control system design during unbalanced network supply. Various control targets such as eliminating the oscillations of the torque, active/reactive power are discussed and the required rotor negative sequence current for fulfilling different control targets are described. Performance of a DFIG-based wind turbine under unbalanced condition using the proposed control method is evaluated by simulation studies using Matlab/Simulink. The proposed control scheme significantly attenuates the DFIG torque or active power oscillations during network unbalance whereas significant torque/power oscillations exist with the conventional control schemes

    Micro-peat as a potential low-cost adsorbent material for COD and NH3-N removal

    Get PDF
    Micro-peat (M-P) was demonstrated in the present study as a potential low cost natural adsorbent for the removal of COD and ammoniacal nitrogen (NH3-N) from landfill leachate. A series of batch experiments were carried out under fixed conditions and the influence of mixture ratio was investigated. The characteristics of leachate were then determined. Results indicated that leachate is non-biodegradable with high concentration of COD (2739.06 mg/L), NH3-N (1765.34 mg/L) and BOD5/COD ratio (0.09). The optimum ratio for activated carbon (AC) and M-P in the removal of COD and NH3-N obtained were at 2.5:1.5 (87%) and 1.0:3.0 (65%) respectively. The low-cost natural adsorbent used in the present investigation is an attractive alternative to the conventional adsorbent (AC). Thus, M-P can be appropriated for use in leachate treatment that could be cost-effective due its local availability and adsorption property
    corecore