44 research outputs found

    Supporting L3 femtocell mobility using the MOBIKE protocol

    Get PDF
    Proceeding of ACCESS 2011, The Second International Conference on Access Networks, Luxembourg City, Luxembourg, June 19-24, 2011Femtocells can be used to improve the indoor coverage and bandwidth of 3G cellular networks in homes and buildings. They are designed to be placed in a fixed location. However, their use would also be interesting in mobile environments such as public transportation systems. This paper studies the mobility limitations at the layer 3 and suggests an approach to support mobility on femtocell networks. This solution employs the protocols already defined in the femtocell architecture, minimizing thus the impact on it.This work has been supported by the Spanish Ministry of Science and Innovation, CONSEQUENCE project (TEC2010- 20572-C02-01) and partially supported by the Madrid regional community project CCG10-UC3M/TIC-4992

    Supporting l3 femtocell mobility using the mobike protocol

    Get PDF
    Abstract-Femtocells can be used to improve the indoor coverage and bandwidth of 3G cellular networks in homes and buildings. They are designed to be placed in a fixed location. However, their use would also be interesting in mobile environments such as public transportation systems. This paper studies the mobility limitations at the layer 3 and suggests an approach to support mobility on femtocell networks. This solution employs the protocols already defined in the femtocell architecture, minimizing thus the impact on it

    Étude de mécanismes assurant la continuité de service de protocoles IKEv2 et IPsec

    Get PDF
    En 2012, le trafic mobile mondial représentait 70% de plus qu'en 2011. L'arrivée de la technologie 4G a multiplié par 19 le volume de trafic non 4G, et en 2013 le nombre de mobiles connectés à l'Internet a dépassé le nombre d'êtres humains sur la planète. Les fournisseurs d'accès Internet (FAI) subissent une forte pression, car ils ont pour obligations d'assurer à leurs clients l'accès au réseau et le maintien de la qualité de service. À court/moyen terme, les opérateurs doivent délester une partie de leur trafic sur des réseaux d'accès alternatifs afin de maintenir les mêmes caractéristiques de performances. Ainsi, pour désengorger les réseaux d'accès radio (RAN), le trafic des clients peut être préférentiellement pris en charge par d'autres réseaux d'accès disponibles. Notons cependant que les réseaux d'accès sans fil offrent des niveaux de sécurité très différents. Pour les femtocells, WiFi ou WiMAX (parmi d'autres technologies sans fil), il doit être prévu des mécanismes permettant de sécuriser les communications. Les opérateurs peuvent s'appuyer sur des protocoles (tels que IPsec) afin d'étendre un domaine de sécurité sur des réseaux non sécurisés. Cela introduit de nouveaux défis en termes de performances et de connectivité pour IPsec. Cette thèse se concentre sur l'étude des mécanismes permettant de garantir et améliorer les performances du protocole IPsec en termes de continuité de service. La continuité de service, aussi connu comme résilience, devient cruciale lorsque le trafic mobile est dévié depuis un réseau d'accès RAN vers d'autres réseaux d'accès alternatifs. C'est pourquoi nous nous concentrons d'abord dans l'ensemble de protocoles assurant une communication IP: IKEv2 et IPsec. Ensuite, nous présentons une étude détaillée des paramètres nécessaires pour maintenir une session VPN, et nous démontrons qu'il est possible de gérer dynamiquement une session VPN entre différentes passerelles de sécurité. L'une des raisons qui justifient la gestion des sessions VPN est d'offrir de la haute disponibilité, le partage de charge ou l'équilibrage de charge pour les connexions IPsec. Ces mécanismes ont pour finalité d'augmenter la continuité de service de sessions IPsec. Certains nouveaux mécanismes ont été récemment mis en oeuvre pour assurer la haute disponibilité sur IPsec. Le projet open source VPN, StrongSwan, a mis en place un mécanisme appelé ClusterIP afin de créer un cluster de passerelles IPsec. Nous avons fusionné cette solution basée sur ClusterIP avec nos propres développements afin de définir deux architectures : une architecture permettant la Haute Disponibilité et une deuxième architecture présentant la gestion dynamique d'un contexte IPsec. Nous avons défini deux environnements : le Mono-LAN où un cluster de noeuds est configuré sous une même adresse IP unique, et le Multi-LAN où chaque passerelle de sécurité dispose d'une adresse IP différente. Les mesures de performance tout au long de la thèse montrent que le transfert d'une session VPN entre différentes passerelles évite les délais supplémentaires liés à la ré-authentification et réduit la consommation CPU, ainsi que les calculs par le matériel cryptographique. D'un point de vue FAI, le transfert de contexte IPsec/IKEv2 pourrait être utilisé pour éviter la surcharge des passerelles, et permettre la redistribution de la charge, de meilleures performances du réseau ainsi que l'amélioration de la qualité de service. L'idée est de permettre à un utilisateur de profiter de la continuité d'un service tout en conservant le même niveau de sécurité que celui initialement proposéDuring 2012, the global mobile traffic represented 70\% more than 2011. The arrival of the 4G technology introduced 19 times more traffic than non-4G sessions, and in 2013 the number of mobile-connected to the Internet exceeded the number of human beings on earth. This scenario introduces great pressure towards the Internet service providers (ISPs), which are called to ensure access to the network and maintain its QoS. At short/middle term, operators will relay on alternative access networks in order to maintain the same performance characteristics. Thus, the traffic of the clients might be offloaded from RANs to some other available access networks. However, the same security level is not ensured by those wireless access networks. Femtocells, WiFi or WiMAX (among other wireless technologies), must rely on some mechanism to secure the communications and avoid untrusted environments. Operators are mainly using IPsec to extend a security domain over untrusted networks. This introduces new challenges in terms of performance and connectivity for IPsec. This thesis concentrates on the study of the mechanism considering improving the IPsec protocol in terms of continuity of service. The continuity of service, also known as resilience, becomes crucial when offloading the traffic from RANs to other access networks. This is why we first concentrate our effort in defining the protocols ensuring an IP communication: IKEv2 and IPsec. Then, we present a detailed study of the parameters needed to keep a VPN session alive, and we demonstrate that it is possible to dynamically manage a VPN session between different gateways. Some of the reasons that justify the management of VPN sessions is to provide high availability, load sharing or load balancing features for IPsec connections. These mechanisms increase the continuity of service of IPsec-based communication. For example, if for some reason a failure occurs to a security gateway, the ISP should be able to overcome this situation and to provide mechanisms to ensure continuity of service to its clients. Some new mechanisms have recently been implemented to provide High Availability over IPsec. The open source VPN project, StrongSwan, implemented a mechanism called ClusterIP in order to create a cluster of IPsec gateways. We merged ClusterIP with our own developments in order to define two architectures: High Availability and Context Management over Mono-LAN and Multi-LAN environments. We called Mono-LAN those architectures where the cluster of security gateways is configured under a single IP address, whereas Multi-LAN concerns those architectures where different security gateways are configured with different IP addresses. Performance measurements throughout the thesis show that transferring a VPN session between different gateways avoids re-authentication delays and reduce the amount of CPU consumption and calculation of cryptographic material. From an ISP point of view, this could be used to avoid overloaded gateways, redistribution of the load, better network performances, improvements of the QoS, etc. The idea is to allow a peer to enjoy the continuity of a service while maintaining the same security level that it was initially proposedEVRY-INT (912282302) / SudocSudocFranceF

    Design and Implementation of Mobility for Virtual Private Network Users

    Get PDF
    Virtual Private Network framework provides Confidentiality, Integrity, Availability, Authentication and Anti- Replay services to the packets travelling through the shared medium like Internet. With the latest Advancement in the technology, Internet is available to the users thru all means like Wireless networks, GPRS, Satellite. When the VPN user roams or switches from one network to other, the IP address gets changed and VPN connection is tear down. The user has to again initiate the VPN connection whenever the network is switched. This paper present outcome of research project aimed at solving the mobility problems faced by roaming VPN users

    Internet Engineering Task Force (IETF)

    Get PDF
    Abstract This document considers a VPN end user establishing an IPsec Security Association (SA) with a Security Gateway using the Internet Key Exchange Protocol version 2 (IKEv2), where at least one of the peers has multiple interfaces or where Security Gateway is a cluster with each node having its own IP address

    Remote Control of Unmanned Aerial Vehicles Through the Internet and IEEE 802.11

    Get PDF
    This dissertation focuses on real-time control of Unmanned Aerial Vehicles (UAVs) through TCP/IP/IEEE 802.11. Using the MAVLink protocol - an open-source protocol for micro air vehicles - a solution that allows the exchange, in real-time, of control messages between a UAV and a remote Control Station was implemented. In order to allow the UAV control by a remote user, the vehicle streams a real-time video feed captured by a video-camera on board. The main challenge of this dissertation is related about the designing and implementation of a fast handover solution that allows an uninterruptible communication

    Interworking Architectures in Heterogeneous Wireless Networks: An Algorithmic Overview

    Get PDF
    The scarce availability of spectrum and the proliferation of smartphones, social networking applications, online gaming etc., mobile network operators (MNOs) are faced with an exponential growth in packet switched data requirements on their networks. Haven invested in legacy systems (such as HSPA, WCDMA, WiMAX, Cdma2000, LTE, etc.) that have hitherto withstood the current and imminent data usage demand, future and projected usage surpass the capabilities of the evolution of these individual technologies. Hence, a more critical, cost-effective and flexible approach to provide ubiquitous coverage for the user using available spectrum is of high demand. Heterogeneous Networks make use of these legacy systems by allowing users to connect to the best network available and most importantly seamlessly handover active sessions amidst them. This paper presents a survey of interworking architectures between IMT 2000 candidate networks that employ the use of IEFT protocols such as MIP, mSCTP, HIP, MOBIKE, IKEV2 and SIP etc. to bring about this much needed capacity

    Design and Implementation of Mobility for Virtual Private Network Users

    Get PDF
    Virtual Private Network framework provides Confidentiality, Integrity, Availability, Authentication and Anti- Replay services to the packets travelling through the shared medium like Internet. With the latest Advancement in the technology, Internet is available to the users thru all means like Wireless networks, GPRS, Satellite. When the VPN user roams or switches from one network to other, the IP address gets changed and VPN connection is tear down. The user has to again initiate the VPN connection whenever the network is switched. This paper present outcome of research project aimed at solving the mobility problems faced by roaming VPN users

    IP Mobility in Wireless Operator Networks

    Get PDF
    Wireless network access is gaining increased heterogeneity in terms of the types of IP capable access technologies. The access network heterogeneity is an outcome of incremental and evolutionary approach of building new infrastructure. The recent success of multi-radio terminals drives both building a new infrastructure and implicit deployment of heterogeneous access networks. Typically there is no economical reason to replace the existing infrastructure when building a new one. The gradual migration phase usually takes several years. IP-based mobility across different access networks may involve both horizontal and vertical handovers. Depending on the networking environment, the mobile terminal may be attached to the network through multiple access technologies. Consequently, the terminal may send and receive packets through multiple networks simultaneously. This dissertation addresses the introduction of IP Mobility paradigm into the existing mobile operator network infrastructure that have not originally been designed for multi-access and IP Mobility. We propose a model for the future wireless networking and roaming architecture that does not require revolutionary technology changes and can be deployed without unnecessary complexity. The model proposes a clear separation of operator roles: (i) access operator, (ii) service operator, and (iii) inter-connection and roaming provider. The separation allows each type of an operator to have their own development path and business models without artificial bindings with each other. We also propose minimum requirements for the new model. We present the state of the art of IP Mobility. We also present results of standardization efforts in IP-based wireless architectures. Finally, we present experimentation results of IP-level mobility in various wireless operator deployments.Erilaiset langattomat verkkoyhteydet lisääntyvät Internet-kykyisten teknologioiden muodossa. Lukuisten eri teknologioiden päällekkäinen käyttö johtuu vähitellen ja tarpeen mukaan rakennetusta verkkoinfrastruktuurista. Useita radioteknologioita (kuten WLAN, GSM ja UMTS) sisältävien päätelaitteiden (kuten älypuhelimet ja kannettavat tietokoneet) viimeaikainen kaupallinen menestys edesauttaa uuden verkkoinfrastruktuurin rakentamista, sekä mahdollisesti johtaa verkkoteknologioiden kirjon lisääntymiseen. Olemassa olevaa verkkoinfrastruktuuria ei kaupallisista syistä kannata korvata uudella teknologialla yhdellä kertaa, vaan vaiheittainen siirtymävaihe kestää tyypillisesti useita vuosia. Internet-kykyiset päätelaitteet voivat liikkua joko saman verkkoteknologian sisällä tai eri verkkoteknologioiden välillä. Verkkoympäristöstä riippuen liikkuvat päätelaitteet voivat liittyä verkkoon useiden verkkoyhteyksien kautta. Näin ollen päätelaite voi lähettää ja vastaanottaa tietoliikennepaketteja yhtäaikaisesti lukuisia verkkoja pitkin. Tämä väitöskirja käsittelee Internet-teknologioiden liikkuvuutta ja näiden teknologioiden tuomista olemassa oleviin langattomien verkko-operaattorien verkkoinfrastruktuureihin. Käsiteltäviä verkkoinfrastruktuureita ei alun perin ole suunniteltu Internet-teknologian liikkuvuuden ja monien yhtäaikaisten yhteyksien ehdoilla. Tässä työssä ehdotetaan tulevaisuuden langattomien verkkojen arkkitehtuurimallia ja ratkaisuja verkkovierailujen toteuttamiseksi. Ehdotettu arkkitehtuuri voidaan toteuttaa ilman mittavia teknologisia mullistuksia. Mallin mukaisessa ehdotuksessa verkko-operaattorin roolit jaetaan selkeästi (i) verkko-operaattoriin, (ii) palveluoperaattoriin ja (iii) yhteys- sekä verkkovierailuoperaattoriin. Roolijako mahdollistaa sen, että kukin operaattorityyppi voi kehittyä itsenäisesti, ja että teennäiset verkkoteknologiasidonnaisuudet poistuvat palveluiden tuottamisessa. Työssä esitetään myös alustava vaatimuslista ehdotetulle mallille, esimerkiksi yhteysoperaattorien laatuvaatimukset. Väitöskirja esittelee myös liikkuvien Internet-teknologioiden viimeisimmän kehityksen. Työssä näytetään lisäksi standardointituloksia Internet-kykyisissä langattomissa arkkitehtuureissa

    A Secure Ground Handover Protocol for LDACS

    Get PDF
    he L-band Digital Aeronautical Communications System (LDACS), the worldwide first true integrated Communication, Navigation and Surveillance (CNS) system, is in the process of being standardized at the International Civil Aviation Organization (ICAO) and the Internet Engineering Task Force (IETF). The cellular system is considered a successor to the 30-years old Very High Frequency (VHF) Datalink mode 2 system (VDLm2) and intended for communications related to the safety and regularity of flight. With the initial rollout planned in the near future, the finalization of all its aspects, including security is of utmost importance. While previous works presented a cybersecurity architecture for LDACS, including a Public Key Infrastructure (PKI), certificates, a Mutual Authentication and Key Establishment (MAKE) procedure, as well as usage of established keys for protecting its user- and control-data plane, the protocol for secure LDACS handovers between cells has not been established. The objective of this work is to present a secure handover procedure for LDACS, fulfilling all security and performance requirements for data- and voice communications via LDACS
    corecore