4,955 research outputs found

    A Metadata-Enabled Scientific Discourse Platform

    Get PDF
    Scientific papers and scientific conferences are still, despite the emergence of several new dissemination technologies, the de-facto standard in which scientific knowledge is consumed and discussed. While there is no shortage of services and platforms that aid this process (e.g. scholarly search engines, websites, blogs, conference management programs), a widely accepted platform used to capture and enrich the interactions of research community has yet to appear. As such, we aim to create new ways for the members and interested people working in research communities to interact; before, during and after their conferences. Furthermore, to serve as a base to these interactions, we want not only to obtain, format and manage a body of legacy and new papers related to this community but also to aggregate several useful information and services to the environment of a discourse platform

    Community Structure in Industrial SAT Instances

    Get PDF
    Modern SAT solvers have experienced a remarkable progress on solving industrial instances. Most of the techniques have been developed after an intensive experimental process. It is believed that these techniques exploit the underlying structure of industrial instances. However, there are few works trying to exactly characterize the main features of this structure. The research community on complex networks has developed techniques of analysis and algorithms to study real-world graphs that can be used by the SAT community. Recently, there have been some attempts to analyze the structure of industrial SAT instances in terms of complex networks, with the aim of explaining the success of SAT solving techniques, and possibly improving them. In this paper, inspired by the results on complex networks, we study the community structure, or modularity, of industrial SAT instances. In a graph with clear community structure, or high modularity, we can find a partition of its nodes into communities such that most edges connect variables of the same community. In our analysis, we represent SAT instances as graphs, and we show that most application benchmarks are characterized by a high modularity. On the contrary, random SAT instances are closer to the classical Erd\"os-R\'enyi random graph model, where no structure can be observed. We also analyze how this structure evolves by the effects of the execution of a CDCL SAT solver. In particular, we use the community structure to detect that new clauses learned by the solver during the search contribute to destroy the original structure of the formula. This is, learned clauses tend to contain variables of distinct communities

    Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges

    Full text link
    Computational Social Choice is an interdisciplinary research area involving Economics, Political Science, and Social Science on the one side, and Mathematics and Computer Science (including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context

    Equilibria in Sequential Allocation

    Full text link
    Sequential allocation is a simple mechanism for sharing multiple indivisible items. We study strategic behavior in sequential allocation. In particular, we consider Nash dynamics, as well as the computation and Pareto optimality of pure equilibria, and Stackelberg strategies. We first demonstrate that, even for two agents, better responses can cycle. We then present a linear-time algorithm that returns a profile (which we call the "bluff profile") that is in pure Nash equilibrium. Interestingly, the outcome of the bluff profile is the same as that of the truthful profile and the profile is in pure Nash equilibrium for \emph{all} cardinal utilities consistent with the ordinal preferences. We show that the outcome of the bluff profile is Pareto optimal with respect to pairwise comparisons. In contrast, we show that an assignment may not be Pareto optimal with respect to pairwise comparisons even if it is a result of a preference profile that is in pure Nash equilibrium for all utilities consistent with ordinal preferences. Finally, we present a dynamic program to compute an optimal Stackelberg strategy for two agents, where the second agent has a constant number of distinct values for the items

    Community structure in industrial SAT instances

    Get PDF
    Modern SAT solvers have experienced a remarkable progress on solving industrial instances. It is believed that most of these successful techniques exploit the underlying structure of industrial instances. Recently, there have been some attempts to analyze the structure of industrial SAT instances in terms of complex networks, with the aim of explaining the success of SAT solving techniques, and possibly improving them. In this paper, we study the community structure, or modularity, of industrial SAT instances. In a graph with clear community structure, or high modularity, we can find a partition of its nodes into communities such that most edges connect variables of the same community. Representing SAT instances as graphs, we show that most application benchmarks are characterized by a high modularity. On the contrary, random SAT instances are closer to the classical Erdös-Rényi random graph model, where no structure can be observed. We also analyze how this structure evolves by the effects of the execution of a CDCL SAT solver, and observe that new clauses learned by the solver during the search contribute to destroy the original structure of the formula. Motivated by this observation, we finally present an application that exploits the community structure to detect relevant learned clauses, and we show that detecting these clauses results in an improvement on the performance of the SAT solver. Empirically, we observe that this improves the performance of several SAT solvers on industrial SAT formulas, especially on satisfiable instances.Peer ReviewedPostprint (published version
    • …
    corecore