167 research outputs found

    Digital Filter Design Using Improved Teaching-Learning-Based Optimization

    Get PDF
    Digital filters are an important part of digital signal processing systems. Digital filters are divided into finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital filters according to the length of their impulse responses. An FIR digital filter is easier to implement than an IIR digital filter because of its linear phase and stability properties. In terms of the stability of an IIR digital filter, the poles generated in the denominator are subject to stability constraints. In addition, a digital filter can be categorized as one-dimensional or multi-dimensional digital filters according to the dimensions of the signal to be processed. However, for the design of IIR digital filters, traditional design methods have the disadvantages of easy to fall into a local optimum and slow convergence. The Teaching-Learning-Based optimization (TLBO) algorithm has been proven beneficial in a wide range of engineering applications. To this end, this dissertation focusses on using TLBO and its improved algorithms to design five types of digital filters, which include linear phase FIR digital filters, multiobjective general FIR digital filters, multiobjective IIR digital filters, two-dimensional (2-D) linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters. Among them, linear phase FIR digital filters, 2-D linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters use single-objective type of TLBO algorithms to optimize; multiobjective general FIR digital filters use multiobjective non-dominated TLBO (MOTLBO) algorithm to optimize; and multiobjective IIR digital filters use MOTLBO with Euclidean distance to optimize. The design results of the five types of filter designs are compared to those obtained by other state-of-the-art design methods. In this dissertation, two major improvements are proposed to enhance the performance of the standard TLBO algorithm. The first improvement is to apply a gradient-based learning to replace the TLBO learner phase to reduce approximation error(s) and CPU time without sacrificing design accuracy for linear phase FIR digital filter design. The second improvement is to incorporate Manhattan distance to simplify the procedure of the multiobjective non-dominated TLBO (MOTLBO) algorithm for general FIR digital filter design. The design results obtained by the two improvements have demonstrated their efficiency and effectiveness

    Asynchronous Demodulation Method for Four SSB arranged on Frequency Axis in Mobile Radio Path using Hilbert Transform

    Get PDF
    In this paper, an asynchronous demodulation method for a four-single sideband (SSB) signal arranged on the frequency axis is developed to support burst mode transmission in a mobile radio path and to achieve greater data throughputs. When a reduced pilot carrier is placed at the center of the 4-SSB signal, it is guarded by lower and upper sidebands, that is, this scheme is classified into a tone-in-band (TIB) system. Digital signal processing (DSP) processors are useful for implementing a Hilbert transform. However, we have for a long time neglected introducing it into the demodulation process of SSB signals

    Hilbert Transform and Applications

    Get PDF

    On the eigenfilter design method and its applications: a tutorial

    Get PDF
    The eigenfilter method for digital filter design involves the computation of filter coefficients as the eigenvector of an appropriate Hermitian matrix. Because of its low complexity as compared to other methods as well as its ability to incorporate various time and frequency-domain constraints easily, the eigenfilter method has been found to be very useful. In this paper, we present a review of the eigenfilter design method for a wide variety of filters, including linear-phase finite impulse response (FIR) filters, nonlinear-phase FIR filters, all-pass infinite impulse response (IIR) filters, arbitrary response IIR filters, and multidimensional filters. Also, we focus on applications of the eigenfilter method in multistage filter design, spectral/spacial beamforming, and in the design of channel-shortening equalizers for communications applications

    Laughing Hyena Distillery: Extracting Compact Recurrences From Convolutions

    Full text link
    Recent advances in attention-free sequence models rely on convolutions as alternatives to the attention operator at the core of Transformers. In particular, long convolution sequence models have achieved state-of-the-art performance in many domains, but incur a significant cost during auto-regressive inference workloads -- naively requiring a full pass (or caching of activations) over the input sequence for each generated token -- similarly to attention-based models. In this paper, we seek to enable O(1)\mathcal O(1) compute and memory cost per token in any pre-trained long convolution architecture to reduce memory footprint and increase throughput during generation. Concretely, our methods consist in extracting low-dimensional linear state-space models from each convolution layer, building upon rational interpolation and model-order reduction techniques. We further introduce architectural improvements to convolution-based layers such as Hyena: by weight-tying the filters across channels into heads, we achieve higher pre-training quality and reduce the number of filters to be distilled. The resulting model achieves 10x higher throughput than Transformers and 1.5x higher than Hyena at 1.3B parameters, without any loss in quality after distillation

    Design and Implementation of FPGA based linear All Digital Phase-Locked Loop for Signal Processing Applications

    Get PDF
    This project presents a linear all-digital phase locked loop based on FPGA. In this ADPLL the phase detection system is realized by generating an analytic signal using a compact implementation of Hilbert transform and then simply computing the instantaneous phase using CORDIC algorithm in vectoring mode of operation. A 16-bit pipelined CORDIC algorithm is employed in order to obtain the phase information of the signal. All the components used in this phase detection system are realized as digital discrete time components. This design does not involve any class of multipliers thus reducing the complexity of the design. The loop filter of the ADPLL has been designed using PI controller which has a low pass behavior and is used to discard the higher order harmonics of the error signal. The CORDIC algorithm in its rotation mode of operation is used to compute sinusoidal values for the DDS. The ADPLL model has been implemented using Xilinx ISE 12.3 and ModelSim PE Student Edition 10.1a. The ADPLL model describes a novel method of implementation of CORDIC algorithm for the DDS system. This ADPLL model basically used for synchronization of closed loop RF control signals in a heavy ion particle accelerator can be implemented even in an ASIC which can be seen with a more general use for many a applications in the daily life

    Increasing the Efficiency of Doppler Processing and Backend Processing in Medical Ultrasound Systems

    Get PDF
    abstract: Ultrasound imaging is one of the major medical imaging modalities. It is cheap, non-invasive and has low power consumption. Doppler processing is an important part of many ultrasound imaging systems. It is used to provide blood velocity information and is built on top of B-mode systems. We investigate the performance of two velocity estimation schemes used in Doppler processing systems, namely, directional velocity estimation (DVE) and conventional velocity estimation (CVE). We find that DVE provides better estimation performance and is the only functioning method when the beam to flow angle is large. Unfortunately, DVE is computationally expensive and also requires divisions and square root operations that are hard to implement. We propose two approximation techniques to replace these computations. The simulation results on cyst images show that the proposed approximations do not affect the estimation performance. We also study backend processing which includes envelope detection, log compression and scan conversion. Three different envelope detection methods are compared. Among them, FIR based Hilbert Transform is considered the best choice when phase information is not needed, while quadrature demodulation is a better choice if phase information is necessary. Bilinear and Gaussian interpolation are considered for scan conversion. Through simulations of a cyst image, we show that bilinear interpolation provides comparable contrast-to-noise ratio (CNR) performance with Gaussian interpolation and has lower computational complexity. Thus, bilinear interpolation is chosen for our system.Dissertation/ThesisM.S. Electrical Engineering 201
    corecore