691 research outputs found

    Signal Reconstruction via H-infinity Sampled-Data Control Theory: Beyond the Shannon Paradigm

    Get PDF
    This paper presents a new method for signal reconstruction by leveraging sampled-data control theory. We formulate the signal reconstruction problem in terms of an analog performance optimization problem using a stable discrete-time filter. The proposed H-infinity performance criterion naturally takes intersample behavior into account, reflecting the energy distributions of the signal. We present methods for computing optimal solutions which are guaranteed to be stable and causal. Detailed comparisons to alternative methods are provided. We discuss some applications in sound and image reconstruction

    Digital and Mixed Domain Hardware Reduction Algorithms and Implementations for Massive MIMO

    Get PDF
    Emerging 5G and 6G based wireless communications systems largely rely on multiple-input-multiple-output (MIMO) systems to reduce inherently extensive path losses, facilitate high data rates, and high spatial diversity. Massive MIMO systems used in mmWave and sub-THz applications consists of hundreds perhaps thousands of antenna elements at base stations. Digital beamforming techniques provide the highest flexibility and better degrees of freedom for phased antenna arrays as compared to its analog and hybrid alternatives but has the highest hardware complexity. Conventional digital beamformers at the receiver require a dedicated analog to digital converter (ADC) for every antenna element, leading to ADCs for elements. The number of ADCs is the key deterministic factor for the power consumption of an antenna array system. The digital hardware consists of fast Fourier transform (FFT) cores with a multiplier complexity of (N log2N) for an element system to generate multiple beams. It is required to reduce the mixed and digital hardware complexities in MIMO systems to reduce the cost and the power consumption, while maintaining high performance. The well-known concept has been in use for ADCs to achieve reduced complexities. An extension of the architecture to multi-dimensional domain is explored in this dissertation to implement a single port ADC to replace ADCs in an element system, using the correlation of received signals in the spatial domain. This concept has applications in conventional uniform linear arrays (ULAs) as well as in focal plane array (FPA) receivers. Our analysis has shown that sparsity in the spatio-temporal frequency domain can be exploited to reduce the number of ADCs from N to where . By using the limited field of view of practical antennas, multiple sub-arrays are combined without interferences to achieve a factor of K increment in the information carrying capacity of the ADC systems. Applications of this concept include ULAs and rectangular array systems. Experimental verifications were done for a element, 1.8 - 2.1 GHz wideband array system to sample using ADCs. This dissertation proposes that frequency division multiplexing (FDM) receiver outputs at an intermediate frequency (IF) can pack multiple (M) narrowband channels with a guard band to avoid interferences. The combined output is then sampled using a single wideband ADC and baseband channels are retrieved in the digital domain. Measurement results were obtained by employing a element, 28 GHz antenna array system to combine channels together to achieve a 75% reduction of ADC requirement. Implementation of FFT cores in the digital domain is not always exact because of the finite precision. Therefore, this dissertation explores the possibility of approximating the discrete Fourier transform (DFT) matrix to achieve reduced hardware complexities at an allowable cost of accuracy. A point approximate DFT (ADFT) core was implemented on digital hardware using radix-32 to achieve savings in cost, size, weight and power (C-SWaP) and synthesized for ASIC at 45-nm technology

    Efficient Acoustic Simulation for Immersive Media and Digital Fabrication

    Get PDF
    Sound is a crucial part of our life. Well-designed acoustic behaviors can lead to significant improvement in both physical and virtual interactions. In computer graphics, most existing methods focused primarily on improving the accuracy. It remained underexplored on how to develop efficient acoustic simulation algorithms for interactive practical applications. The challenges arise from the dilemma between expensive accurate simulations and fast feedback demanded by intuitive user interaction: traditional physics-based acoustic simulations are computationally expensive; yet, for end users to benefit from the simulations, it is crucial to give prompt feedback during interactions. In this thesis, I investigate how to develop efficient acoustic simulations for real-world applications such as immersive media and digital fabrication. To address the above-mentioned challenges, I leverage precomputation and optimization to significantly improve the speed while preserving the accuracy of complex acoustic phenomena. This work discusses three efforts along this research direction: First, to ease sound designer's workflow, we developed a fast keypoint-based precomputation algorithm to enable interactive acoustic transfer values in virtual sound simulations. Second, for realistic audio editing in 360° videos, we proposed an inverse material optimization based on fast sound simulation and a hybrid ambisonic audio synthesis that exploits the directional isotropy in spatial audios. Third, we devised a modular approach to efficiently simulate and optimize fabrication-ready acoustic filters, achieving orders of magnitudes speedup while maintaining the simulation accuracy. Through this series of projects, I demonstrate a wide range of applications made possible by efficient acoustic simulations
    • …
    corecore