37,628 research outputs found

    Weakly supervised segment annotation via expectation kernel density estimation

    Full text link
    Since the labelling for the positive images/videos is ambiguous in weakly supervised segment annotation, negative mining based methods that only use the intra-class information emerge. In these methods, negative instances are utilized to penalize unknown instances to rank their likelihood of being an object, which can be considered as a voting in terms of similarity. However, these methods 1) ignore the information contained in positive bags, 2) only rank the likelihood but cannot generate an explicit decision function. In this paper, we propose a voting scheme involving not only the definite negative instances but also the ambiguous positive instances to make use of the extra useful information in the weakly labelled positive bags. In the scheme, each instance votes for its label with a magnitude arising from the similarity, and the ambiguous positive instances are assigned soft labels that are iteratively updated during the voting. It overcomes the limitations of voting using only the negative bags. We also propose an expectation kernel density estimation (eKDE) algorithm to gain further insight into the voting mechanism. Experimental results demonstrate the superiority of our scheme beyond the baselines.Comment: 9 pages, 2 figure

    Learning and Interpreting Multi-Multi-Instance Learning Networks

    Get PDF
    We introduce an extension of the multi-instance learning problem where examples are organized as nested bags of instances (e.g., a document could be represented as a bag of sentences, which in turn are bags of words). This framework can be useful in various scenarios, such as text and image classification, but also supervised learning over graphs. As a further advantage, multi-multi instance learning enables a particular way of interpreting predictions and the decision function. Our approach is based on a special neural network layer, called bag-layer, whose units aggregate bags of inputs of arbitrary size. We prove theoretically that the associated class of functions contains all Boolean functions over sets of sets of instances and we provide empirical evidence that functions of this kind can be actually learned on semi-synthetic datasets. We finally present experiments on text classification, on citation graphs, and social graph data, which show that our model obtains competitive results with respect to accuracy when compared to other approaches such as convolutional networks on graphs, while at the same time it supports a general approach to interpret the learnt model, as well as explain individual predictions.Comment: JML

    Multiple Instance Learning: A Survey of Problem Characteristics and Applications

    Full text link
    Multiple instance learning (MIL) is a form of weakly supervised learning where training instances are arranged in sets, called bags, and a label is provided for the entire bag. This formulation is gaining interest because it naturally fits various problems and allows to leverage weakly labeled data. Consequently, it has been used in diverse application fields such as computer vision and document classification. However, learning from bags raises important challenges that are unique to MIL. This paper provides a comprehensive survey of the characteristics which define and differentiate the types of MIL problems. Until now, these problem characteristics have not been formally identified and described. As a result, the variations in performance of MIL algorithms from one data set to another are difficult to explain. In this paper, MIL problem characteristics are grouped into four broad categories: the composition of the bags, the types of data distribution, the ambiguity of instance labels, and the task to be performed. Methods specialized to address each category are reviewed. Then, the extent to which these characteristics manifest themselves in key MIL application areas are described. Finally, experiments are conducted to compare the performance of 16 state-of-the-art MIL methods on selected problem characteristics. This paper provides insight on how the problem characteristics affect MIL algorithms, recommendations for future benchmarking and promising avenues for research

    A review of multi-instance learning assumptions

    Get PDF
    Multi-instance (MI) learning is a variant of inductive machine learning, where each learning example contains a bag of instances instead of a single feature vector. The term commonly refers to the supervised setting, where each bag is associated with a label. This type of representation is a natural fit for a number of real-world learning scenarios, including drug activity prediction and image classification, hence many MI learning algorithms have been proposed. Any MI learning method must relate instances to bag-level class labels, but many types of relationships between instances and class labels are possible. Although all early work in MI learning assumes a specific MI concept class known to be appropriate for a drug activity prediction domain; this ‘standard MI assumption’ is not guaranteed to hold in other domains. Much of the recent work in MI learning has concentrated on a relaxed view of the MI problem, where the standard MI assumption is dropped, and alternative assumptions are considered instead. However, often it is not clearly stated what particular assumption is used and how it relates to other assumptions that have been proposed. In this paper, we aim to clarify the use of alternative MI assumptions by reviewing the work done in this area

    A Convex Relaxation for Weakly Supervised Classifiers

    Full text link
    This paper introduces a general multi-class approach to weakly supervised classification. Inferring the labels and learning the parameters of the model is usually done jointly through a block-coordinate descent algorithm such as expectation-maximization (EM), which may lead to local minima. To avoid this problem, we propose a cost function based on a convex relaxation of the soft-max loss. We then propose an algorithm specifically designed to efficiently solve the corresponding semidefinite program (SDP). Empirically, our method compares favorably to standard ones on different datasets for multiple instance learning and semi-supervised learning as well as on clustering tasks.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012
    • …
    corecore