35,130 research outputs found

    Feature diversity for optimized human micro-doppler classification using multistatic radar

    Get PDF
    This paper investigates the selection of different combinations of features at different multistatic radar nodes, depending on scenario parameters, such as aspect angle to the target and signal-to-noise ratio, and radar parameters, such as dwell time, polarisation, and frequency band. Two sets of experimental data collected with the multistatic radar system NetRAD are analysed for two separate problems, namely the classification of unarmed vs potentially armed multiple personnel, and the personnel recognition of individuals based on walking gait. The results show that the overall classification accuracy can be significantly improved by taking into account feature diversity at each radar node depending on the environmental parameters and target behaviour, in comparison with the conventional approach of selecting the same features for all nodes

    Sensored and sensorless speed control methods for brushless doubly fed reluctance motors

    Get PDF
    The study considers aspects of scalar V/f control, vector control and direct torque (and flux) control (DTC) of the brushless doubly fed reluctance machine (BDFRM) as a promising cost-effective alternative to the existing technological solutions for applications with restricted variable speed capability such as large pumps and wind turbine generators. Apart from providing a comprehensive literature review and analysis of these control methods, the development and results of experimental verification, of an angular velocity observerbased DTC scheme for sensorless speed control of the BDFRM which, unlike most of the other DTC-concept applications, can perform well down to zero supply frequency of the inverter-fed winding, have also been presented in the study

    Relativistic quantum mechanics on the SL(2,R) spacetime

    Full text link
    The Schr\"odinger-type formalism of the Klein-Gordon quantum mechanics is adapted for the case of the SL(2,R)SL(2,\R) spacetime. The free particle case is solved, the results of a recent work are reproduced while all the other, topologically nontrivial solutions and the antiparticle modes are also found, and a deeper insight into the physical content of the theory is given.Comment: version to appear in J. Math. Phys, 12 pages, LaTe

    Maximum Euclidean distance network coded modulation for asymmetric decode-and-forward two-way relaying

    No full text
    Network coding (NC) compresses two traffic flows with the aid of low-complexity algebraic operations, hence holds the potential of significantly improving both the efficiency of wireless two-way relaying, where each receiver is collocated with a transmitter and hence has prior knowledge of the message intended for the distant receiver. In this contribution, network coded modulation (NCM) is proposed for jointly performing NC and modulation. As in classic coded modulation, the Euclidean distance between the symbols is maximised, hence the symbol error probability is minimised. Specifically, the authors first propose set-partitioning-based NCM as an universal concept which can be combined with arbitrary constellations. Then the authors conceive practical phase-shift keying/quadrature amplitude modulation (PSK/QAM) NCM schemes, referred to as network coded PSK/QAM, based on modulo addition of the normalised phase/amplitude. To achieve a spatial diversity gain at a low complexity, a NC oriented maximum ratio combining scheme is proposed for combining the network coded signal and the original signal of the source. An adaptive NCM is also proposed to maximise the throughput while guaranteeing a target bit error probability (BEP). Both theoretical performance analysis and simulations demonstrate that the proposed NCM can achieve at least 3 dB signal-to-noise ratio gain and two times diversity gain

    Dynamic Virtual Page-based Flash Translation Layer with Novel Hot Data Identification and Adaptive Parallelism Management

    Get PDF
    Solid-state disks (SSDs) tend to replace traditional motor-driven hard disks in high-end storage devices in past few decades. However, various inherent features, such as out-of-place update [resorting to garbage collection (GC)] and limited endurance (resorting to wear leveling), need to be reduced to a large extent before that day comes. Both the GC and wear leveling fundamentally depend on hot data identification (HDI). In this paper, we propose a hot data-aware flash translation layer architecture based on a dynamic virtual page (DVPFTL) so as to improve the performance and lifetime of NAND flash devices. First, we develop a generalized dual layer HDI (DL-HDI) framework, which is composed of a cold data pre-classifier and a hot data post-identifier. Those can efficiently follow the frequency and recency of information access. Then, we design an adaptive parallelism manager (APM) to assign the clustered data chunks to distinct resident blocks in the SSD so as to prolong its endurance. Finally, the experimental results from our realized SSD prototype indicate that the DVPFTL scheme has reliably improved the parallelizability and endurance of NAND flash devices with improved GC-costs, compared with related works.Peer reviewe
    • …
    corecore