1,237 research outputs found

    High capacity data embedding schemes for digital media

    Get PDF
    High capacity image data hiding methods and robust high capacity digital audio watermarking algorithms are studied in this thesis. The main results of this work are the development of novel algorithms with state-of-the-art performance, high capacity and transparency for image data hiding and robustness, high capacity and low distortion for audio watermarking.En esta tesis se estudian y proponen diversos métodos de data hiding de imágenes y watermarking de audio de alta capacidad. Los principales resultados de este trabajo consisten en la publicación de varios algoritmos novedosos con rendimiento a la altura de los mejores métodos del estado del arte, alta capacidad y transparencia, en el caso de data hiding de imágenes, y robustez, alta capacidad y baja distorsión para el watermarking de audio.En aquesta tesi s'estudien i es proposen diversos mètodes de data hiding d'imatges i watermarking d'àudio d'alta capacitat. Els resultats principals d'aquest treball consisteixen en la publicació de diversos algorismes nous amb rendiment a l'alçada dels millors mètodes de l'estat de l'art, alta capacitat i transparència, en el cas de data hiding d'imatges, i robustesa, alta capacitat i baixa distorsió per al watermarking d'àudio.Societat de la informació i el coneixemen

    Finite-Block-Length Analysis in Classical and Quantum Information Theory

    Full text link
    Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects

    Design of sequences with good correlation properties

    Get PDF
    This thesis is dedicated to exploring sequences with good correlation properties. Periodic sequences with desirable correlation properties have numerous applications in communications. Ideally, one would like to have a set of sequences whose out-of-phase auto-correlation magnitudes and cross-correlation magnitudes are very small, preferably zero. However, theoretical bounds show that the maximum magnitudes of auto-correlation and cross-correlation of a sequence set are mutually constrained, i.e., if a set of sequences possesses good auto-correlation properties, then the cross-correlation properties are not good and vice versa. The design of sequence sets that achieve those theoretical bounds is therefore of great interest. In addition, instead of pursuing the least possible correlation values within an entire period, it is also interesting to investigate families of sequences with ideal correlation in a smaller zone around the origin. Such sequences are referred to as sequences with zero correlation zone or ZCZ sequences, which have been extensively studied due to their applications in 4G LTE and 5G NR systems, as well as quasi-synchronous code-division multiple-access communication systems. Paper I and a part of Paper II aim to construct sequence sets with low correlation within a whole period. Paper I presents a construction of sequence sets that meets the Sarwate bound. The construction builds a connection between generalised Frank sequences and combinatorial objects, circular Florentine arrays. The size of the sequence sets is determined by the existence of circular Florentine arrays of some order. Paper II further connects circular Florentine arrays to a unified construction of perfect polyphase sequences, which include generalised Frank sequences as a special case. The size of a sequence set that meets the Sarwate bound, depends on a divisor of the period of the employed sequences, as well as the existence of circular Florentine arrays. Paper III-VI and a part of Paper II are devoted to ZCZ sequences. Papers II and III propose infinite families of optimal ZCZ sequence sets with respect to some bound, which are used to eliminate interference within a single cell in a cellular network. Papers V, VI and a part of Paper II focus on constructions of multiple optimal ZCZ sequence sets with favorable inter-set cross-correlation, which can be used in multi-user communication environments to minimize inter-cell interference. In particular, Paper~II employs circular Florentine arrays and improves the number of the optimal ZCZ sequence sets with optimal inter-set cross-correlation property in some cases.Doktorgradsavhandlin

    A Maximal Local Maximum-Sum Segment Data Structure

    Get PDF

    M-Channel Fast Hartley Transform Based Integer DCT for Lossy-to-Lossless Image Coding

    Get PDF
    This paper presents an M-channel (M=2n (n ∈ N)) integer discrete cosine transforms (IntDCTs) based on fast Hartley transform (FHT) for lossy-to-lossless image coding which has image quality scalability from lossy data to lossless data. Many IntDCTs with lifting structures have already been presented to achieve lossy-to-lossless image coding. Recently, an IntDCT based on direct-lifting of DCT/IDCT, which means direct use of DCT and inverse DCT (IDCT) to lifting blocks, has been proposed. Although the IntDCT shows more efficient coding performance than any conventional IntDCT, it entails many computational costs due to an extra information that is a key point to realize its direct-lifting structure. On the other hand, the almost conventional IntDCTs without an extra information cannot be easily expanded to a larger size than the standard size M=8, or the conventional IntDCT should be improved for efficient coding performance even if it realizes an arbitrary size. The proposed IntDCT does not need any extra information, can be applied to size M=2n for arbitrary n, and shows better coding performance than the conventional IntDCTs without any extra information by applying the direct-lifting to the pre- and post-processing block of DCT. Moreover, the proposed IntDCT is implemented with a half of the computational cost of the IntDCT based on direct-lifting of DCT/IDCT even though it shows the best coding performance

    情報セントリックIoTサーベランスシステムに関する研究

    Get PDF
    早大学位記番号:新8269早稲田大

    多人数署名の証明可能安全性に関する研究

    Get PDF
    筑波大学 (University of Tsukuba)201

    Design of IIR Digital Filters with Arbitrary Flatness Using Iterative Quadratic Programming

    Get PDF
    This paper presents a design method of Chebyshev-type and inverse-Chebyshev-type infinite impulse response (IIR) filters with an approximately linear phase response. In the design of Chebyshev-type filters, the flatness condition in the stopband is preincorporated into a transfer function, and an equiripple characteristic in the passband is achieved by iteratively solving the QP problem using the transfer function. In the design of inverse-Chebyshev-type filters, the flatness condition in the passband is added to the constraint of the QP problem as the linear matrix equality, and an equiripple characteristic in the stopband is realized by iteratively solving the QP problem. To guarantee the stability of the obtained filters, we apply the extended positive realness to the QP problem. As a result, the proposed method can design the filters with more high precision than the conventional methods. The effectiveness of the proposed design method is illustrated with some examples
    corecore