10 research outputs found

    A Quantitative Comparison of Calibration Methods for RGB-D Sensors Using Different Technologies

    Get PDF
    RGB-D (Red Green Blue and Depth) sensors are devices that can provide color and depth information from a scene at the same time. Recently, they have been widely used in many solutions due to their commercial growth from the entertainment market to many diverse areas (e.g., robotics, CAD, etc.). In the research community, these devices have had good uptake due to their acceptable level of accuracy for many applications and their low cost, but in some cases, they work at the limit of their sensitivity, near to the minimum feature size that can be perceived. For this reason, calibration processes are critical in order to increase their accuracy and enable them to meet the requirements of such kinds of applications. To the best of our knowledge, there is not a comparative study of calibration algorithms evaluating its results in multiple RGB-D sensors. Specifically, in this paper, a comparison of the three most used calibration methods have been applied to three different RGB-D sensors based on structured light and time-of-flight. The comparison of methods has been carried out by a set of experiments to evaluate the accuracy of depth measurements. Additionally, an object reconstruction application has been used as example of an application for which the sensor works at the limit of its sensitivity. The obtained results of reconstruction have been evaluated through visual inspection and quantitative measurements

    ACDC: Automated Cell Detection and Counting for Time-Lapse Fluorescence Microscopy.

    Get PDF
    Advances in microscopy imaging technologies have enabled the visualization of live-cell dynamic processes using time-lapse microscopy imaging. However, modern methods exhibit several limitations related to the training phases and to time constraints, hindering their application in the laboratory practice. In this work, we present a novel method, named Automated Cell Detection and Counting (ACDC), designed for activity detection of fluorescent labeled cell nuclei in time-lapse microscopy. ACDC overcomes the limitations of the literature methods, by first applying bilateral filtering on the original image to smooth the input cell images while preserving edge sharpness, and then by exploiting the watershed transform and morphological filtering. Moreover, ACDC represents a feasible solution for the laboratory practice, as it can leverage multi-core architectures in computer clusters to efficiently handle large-scale imaging datasets. Indeed, our Parent-Workers implementation of ACDC allows to obtain up to a 3.7× speed-up compared to the sequential counterpart. ACDC was tested on two distinct cell imaging datasets to assess its accuracy and effectiveness on images with different characteristics. We achieved an accurate cell-count and nuclei segmentation without relying on large-scale annotated datasets, a result confirmed by the average Dice Similarity Coefficients of 76.84 and 88.64 and the Pearson coefficients of 0.99 and 0.96, calculated against the manual cell counting, on the two tested datasets

    A Fast and Robust Extrinsic Calibration for RGB-D Camera Networks

    Get PDF
    From object tracking to 3D reconstruction, RGB-Depth (RGB-D) camera networks play an increasingly important role in many vision and graphics applications. Practical applications often use sparsely-placed cameras to maximize visibility, while using as few cameras as possible to minimize cost. In general, it is challenging to calibrate sparse camera networks due to the lack of shared scene features across different camera views. In this paper, we propose a novel algorithm that can accurately and rapidly calibrate the geometric relationships across an arbitrary number of RGB-D cameras on a network. Our work has a number of novel features. First, to cope with the wide separation between different cameras, we establish view correspondences by using a spherical calibration object. We show that this approach outperforms other techniques based on planar calibration objects. Second, instead of modeling camera extrinsic calibration using rigid transformation, which is optimal only for pinhole cameras, we systematically test different view transformation functions including rigid transformation, polynomial transformation and manifold regression to determine the most robust mapping that generalizes well to unseen data. Third, we reformulate the celebrated bundle adjustment procedure to minimize the global 3D reprojection error so as to fine-tune the initial estimates. Finally, our scalable client-server architecture is computationally efficient: the calibration of a five-camera system, including data capture, can be done in minutes using only commodity PCs. Our proposed framework is compared with other state-of-the-arts systems using both quantitative measurements and visual alignment results of the merged point clouds

    Smartphone-Based Escalator Recognition for the Visually Impaired

    Get PDF
    It is difficult for visually impaired individuals to recognize escalators in everyday environments. If the individuals ride on escalators in the wrong direction, they will stumble on the steps. This paper proposes a novel method to assist visually impaired individuals in finding available escalators by the use of smartphone cameras. Escalators are recognized by analyzing optical flows in video frames captured by the cameras, and auditory feedback is provided to the individuals. The proposed method was implemented on an Android smartphone and applied to actual escalator scenes. The experimental results demonstrate that the proposed method is promising for helping visually impaired individuals use escalators

    Semantics-Driven Large-Scale 3D Scene Retrieval

    Get PDF

    Multispectral scleral patterns for ocular biometric recognition

    Get PDF
    Biometrics is the science of recognizing people based on their physical or behavioral traits such as face, fingerprints, iris, and voice. Among the various traits studied in the literature, ocular biometrics has gained popularity due to the significant progress made in iris recognition. However, iris recognition is unfavorably influenced by the non-frontal gaze direction of the eye with respect to the acquisition device. In such scenarios, additional parts of the eye, such as the sclera (the white of the eye) may be of significance. In this dissertation, we investigate the use of the sclera texture and the vasculature patterns evident in the sclera as potential biometric cues. Iris patterns are better discerned in the near infrared spectrum (NIR) while vasculature patterns are better discerned in the visible spectrum (RGB). Therefore, multispectral images of the eye, consisting of both NIR and RGB channels, were used in this work in order to ensure that both the iris and the vasculature patterns are successfully imaged.;The contributions of this work include the following. Firstly, a multispectral ocular database was assembled by collecting high-resolution color infrared images of the left and right eyes of 103 subjects using the DuncanTech MS 3100 multispectral camera. Secondly, a novel segmentation algorithm was designed to localize the spacial extent of the iris, sclera and pupil in the ocular images. The proposed segmentation algorithm is a combination of region-based and edge-based schemes that exploits the multispectral information. Thirdly, different feature extraction and matching method were used to determine the potential of utilizing the sclera and the accompanying vasculature pattern as biometric cues. The three specific matching methods considered in this work were keypoint-based matching, direct correlation matching, and minutiae matching based on blood vessel bifurcations. Fourthly, the potential of designing a bimodal ocular system that combines the sclera biometric with the iris biometric was explored.;Experiments convey the efficacy of the proposed segmentation algorithm in localizing the sclera and the iris. The use of keypoint-based matching was observed to result in the best recognition performance for the scleral patterns. Finally, the possibility of utilizing the scleral patterns in conjunction with the iris for recognizing ocular images exhibiting non-frontal gaze directions was established

    Extração Semi-Automática de Informação Desportiva a partir de Vídeo

    Get PDF
    Os eventos desportivos nos dias de hoje, são bastante populares, sendo visualizados pelo mundo inteiro nos mais variados dispositivos. Porém se o utilizador não tiver possibi-lidade de assistir ao evento em direto, e tendo em conta a velocidade com que a informa-ção se difunde nos dias de hoje, a probabilidade de o utilizador saber como correu o even-to (resultado, lances polémicos) antes de ter a possibilidade de o visualizar em diferido é muito grande. É nestas situações que os highlights possuem uma grande importância, pois a tendência natural do utilizador não será visualizar o evento em diferido. O que os vários utilizadores pretendem é sim visualizar as partes do evento com maior relevância. Com este projeto pretende-se gerar, de forma automática, uma base de dados asso-ciada a uma transmissão televisiva de um evento desportivo, mais especificamente de um jogo de futebol, recorrendo a várias características que se possam extrair através do pró-prio vídeo. Pretende-se combinar o processamento dos vários elementos visuais, de modo a produzir ficheiros XML com a informação associada a cada frame e momento do jogo. Para além do resumo, há a intenção de dar ao utilizador a possibilidade de executar pes-quisas específicas sobre o jogo, como todos os lances que ocorreram numa das balizas, de-tetar jogadores, detetar certos elementos e lances do jogo entre outros. Como existem imensos desportos o foco principal deste projeto, será o futebol, porém pretende-se alar-gar os algoritmos e métodos a desenvolver, posteriormente a outros eventos. Os resulta-dos obtidos foram bastante favoráveis, com percentagens de precisão que variam entre os 70% e 88%

    A generic computer platform for efficient iris recognition

    Get PDF
    This document presents the work carried out for the purposes of completing the Engineering Doctorate (EngD) program at the Institute for System Level Integration (iSLI), which was a partnership between the universities of Edinburgh, Glasgow, Heriot-Watt and Strathclyde. The EngD is normally undertaken with an industrial sponsor, but due to a set of unforeseen circumstances this was not the case for this work. However, the work was still undertaken to the same standards as would be expected by an industrial sponsor. An individual’s biometrics include fingerprints, palm-prints, retinal, iris and speech patterns. Even the way people move and sign their name has been shown to be uniquely associated with that individual. This work focuses on the recognition of an individual’s iris patterns. The results reported in the literature are often presented in such a manner that direct comparison between methods is difficult. There is also minimal code resource and no tool available to help simplify the process of developing iris recognition algorithms, so individual developers are required to write the necessary software almost every time. Finally, segmentation performance is currently only measurable using manual evaluation, which is time consuming and prone to human error. This thesis presents a completely novel generic platform for the purposes of developing, testing and evaluating iris recognition algorithms which is designed to simplify the process of developing and testing iris recognition algorithms. Existing open-source algorithms are integrated into the generic platform and are evaluated using the results it produces. Three iris recognition segmentation algorithms and one normalisation algorithm are proposed. Three of the algorithms increased true match recognition performance by between two and 45 percentage points when compared to the available open-source algorithms and methods found in the literature. A matching algorithm was developed that significantly speeds up the process of analysing the results of encoding. Lastly, this work also proposes a method of automatically evaluating the performance of segmentation algorithms, so minimising the need for manual evaluation
    corecore