133 research outputs found

    Resilient Misbehaviour Detection MAC Protocol (MD-MAC) for Distributed Wireless Networks

    Get PDF
    Chaminda Alocious, Hannan Xiao, B. Christianson, 'Resilient Misbehaviour Detection MAC Protocol (MD-MAC) for Distributed Wireless Networks' paper presented at the 2016 IEEE Wireless Communications and Networking Conference (IEEE WCNC). Doha, Qatar. 3-6 April 2016Wireless network security requirements are becoming more important and critical. The modern network security architectures require more attention to provide security in each network layer. This will require understanding of protocol vulnerabilities in existing protocol architectures. However, providing security requirements are not just limited to confidentiality and integrity, also availability and fairness are important security elements. IEEE 802.11 MAC protocol is one of the most common standard in modern day networks and has been designed without a consideration for providing security protection at MAC layer. IEEE 802.11 assumes all the nodes in the network are cooperative. However, nodes may purposefully misbehave in order to obtain extra bandwidth, conserve resources and disrupt network performance. This research proposes a Misbehaviour Detection MAC protocol (MD-MAC) to address the problematic scenarios of MAC layer misbehaviours, which takes a novel approach to detect misbehaviours in Mobile Adhoc Networks (MANETs). The MD-MAC modifies the CSMA/CA protocol message exchange and uses verifiable backoff value generation mechanism with an incorporated trust model which is suitable for distributed networks. The MD-MAC protocol has been implemented and evaluated in ns2, simulation results suggest that the protocol is able to detect misbehaving wireless nodes in a distributed network environment

    A business and legislative perspective of V2X and mobility applications in 5G networks

    Get PDF
    Vehicle-to-everything (V2X) communication is a powerful concept that not only ensures public safety (e.g., by avoiding road accidents) but also offers many economic benefits (e.g., by optimizing the macroscopic behavior of the traffic across an area). On the one hand, V2X communication brings new business opportunities for many stakeholders, such as vehicle manufacturers, retailers, Mobile Network Operators (MNOs), V2X service providers, and governments. On the other hand, the convergence of these stakeholders to a common platform possesses many technical and business challenges. In this article, we identify the issues and challenges faced by V2X communications, while focusing on the business models. We propose different solutions to potentially resolve the identified challenges in the framework of 5G networks and propose a high-level hierarchy of a potential business model for a 5G-based V2X ecosystem. Moreover, we provide a concise overview of the legislative status of V2X communications across different regions in the world

    Analysing Self Interference Cancellation in Full Duplex Radios

    Get PDF

    Impact of 3D Propagation on Wi-Fi Performance in MIMO System

    Get PDF

    Energy detection based spectrum sensing over enriched multipath fading channels

    Get PDF
    Energy detection has been for long constituting the most popular sensing method in RADAR and cognitive radio systems. The present paper investigates the sensing behaviour of an energy detector over Hoyt fading channels, which have been extensively shown to provide rather accurate characterization of enriched multipath fading conditions. To this end, a simple series representation and an exact closed-form expression are firstly derived for the corresponding average probability of detection for the conventional single-channel communication scenario. These expressions are subsequently employed in deriving novel analytic results for the case of both collaborative detection and square-law selection diversity reception. The derived expressions have a relatively tractable algebraic representation which renders them convenient to handle both analytically and numerically. As a result, they can be utilized in quantifying the effect of fading in energy detection based spectrum sensing and in the determination of the trade-offs between sensing performance and energy efficiency in cognitive radio communications. Based on this, it is shown that the performance of the energy detector depends highly on the severity of fading as even slight variations of the fading conditions affect the value of the average probability of detection. It is also clearly shown that the detection performance improves substantially as the number of branches or collaborating users increase. This improvement is substantial in both moderate and severe fading conditions and can practically provide full compensation for the latter cases
    corecore