10,182 research outputs found

    An Electromigration and Thermal Model of Power Wires for a Priori High-Level Reliability Prediction

    Get PDF
    In this paper, a simple power-distribution electrothermal model including the interconnect self-heating is used together with a statistical model of average and rms currents of functional blocks and a high-level model of fanout distribution and interconnect wirelength. Following the 2001 SIA roadmap projections, we are able to predict a priori that the minimum width that satisfies the electromigration constraints does not scale like the minimum metal pitch in future technology nodes. As a consequence, the percentage of chip area covered by power lines is expected to increase at the expense of wiring resources unless proper countermeasures are taken. Some possible solutions are proposed in the paper

    A survey of carbon nanotube interconnects for energy efficient integrated circuits

    Get PDF
    This article is a review of the state-of-art carbon nanotube interconnects for Silicon application with respect to the recent literature. Amongst all the research on carbon nanotube interconnects, those discussed here cover 1) challenges with current copper interconnects, 2) process & growth of carbon nanotube interconnects compatible with back-end-of-line integration, and 3) modeling and simulation for circuit-level benchmarking and performance prediction. The focus is on the evolution of carbon nanotube interconnects from the process, theoretical modeling, and experimental characterization to on-chip interconnect applications. We provide an overview of the current advancements on carbon nanotube interconnects and also regarding the prospects for designing energy efficient integrated circuits. Each selected category is presented in an accessible manner aiming to serve as a survey and informative cornerstone on carbon nanotube interconnects relevant to students and scientists belonging to a range of fields from physics, processing to circuit design

    Data dependent energy modelling for worst case energy consumption analysis

    Get PDF
    Safely meeting Worst Case Energy Consumption (WCEC) criteria requires accurate energy modeling of software. We investigate the impact of instruction operand values upon energy consumption in cacheless embedded processors. Existing instruction-level energy models typically use measurements from random input data, providing estimates unsuitable for safe WCEC analysis. We examine probabilistic energy distributions of instructions and propose a model for composing instruction sequences using distributions, enabling WCEC analysis on program basic blocks. The worst case is predicted with statistical analysis. Further, we verify that the energy of embedded benchmarks can be characterised as a distribution, and compare our proposed technique with other methods of estimating energy consumption
    • …
    corecore