8,420 research outputs found

    Is "Better Data" Better than "Better Data Miners"? (On the Benefits of Tuning SMOTE for Defect Prediction)

    Full text link
    We report and fix an important systematic error in prior studies that ranked classifiers for software analytics. Those studies did not (a) assess classifiers on multiple criteria and they did not (b) study how variations in the data affect the results. Hence, this paper applies (a) multi-criteria tests while (b) fixing the weaker regions of the training data (using SMOTUNED, which is a self-tuning version of SMOTE). This approach leads to dramatically large increases in software defect predictions. When applied in a 5*5 cross-validation study for 3,681 JAVA classes (containing over a million lines of code) from open source systems, SMOTUNED increased AUC and recall by 60% and 20% respectively. These improvements are independent of the classifier used to predict for quality. Same kind of pattern (improvement) was observed when a comparative analysis of SMOTE and SMOTUNED was done against the most recent class imbalance technique. In conclusion, for software analytic tasks like defect prediction, (1) data pre-processing can be more important than classifier choice, (2) ranking studies are incomplete without such pre-processing, and (3) SMOTUNED is a promising candidate for pre-processing.Comment: 10 pages + 2 references. Accepted to International Conference of Software Engineering (ICSE), 201

    Is "Better Data" Better than "Better Data Miners"? (On the Benefits of Tuning SMOTE for Defect Prediction)

    Full text link
    We report and fix an important systematic error in prior studies that ranked classifiers for software analytics. Those studies did not (a) assess classifiers on multiple criteria and they did not (b) study how variations in the data affect the results. Hence, this paper applies (a) multi-criteria tests while (b) fixing the weaker regions of the training data (using SMOTUNED, which is a self-tuning version of SMOTE). This approach leads to dramatically large increases in software defect predictions. When applied in a 5*5 cross-validation study for 3,681 JAVA classes (containing over a million lines of code) from open source systems, SMOTUNED increased AUC and recall by 60% and 20% respectively. These improvements are independent of the classifier used to predict for quality. Same kind of pattern (improvement) was observed when a comparative analysis of SMOTE and SMOTUNED was done against the most recent class imbalance technique. In conclusion, for software analytic tasks like defect prediction, (1) data pre-processing can be more important than classifier choice, (2) ranking studies are incomplete without such pre-processing, and (3) SMOTUNED is a promising candidate for pre-processing.Comment: 10 pages + 2 references. Accepted to International Conference of Software Engineering (ICSE), 201

    Evolution of statistical analysis in empirical software engineering research: Current state and steps forward

    Full text link
    Software engineering research is evolving and papers are increasingly based on empirical data from a multitude of sources, using statistical tests to determine if and to what degree empirical evidence supports their hypotheses. To investigate the practices and trends of statistical analysis in empirical software engineering (ESE), this paper presents a review of a large pool of papers from top-ranked software engineering journals. First, we manually reviewed 161 papers and in the second phase of our method, we conducted a more extensive semi-automatic classification of papers spanning the years 2001--2015 and 5,196 papers. Results from both review steps was used to: i) identify and analyze the predominant practices in ESE (e.g., using t-test or ANOVA), as well as relevant trends in usage of specific statistical methods (e.g., nonparametric tests and effect size measures) and, ii) develop a conceptual model for a statistical analysis workflow with suggestions on how to apply different statistical methods as well as guidelines to avoid pitfalls. Lastly, we confirm existing claims that current ESE practices lack a standard to report practical significance of results. We illustrate how practical significance can be discussed in terms of both the statistical analysis and in the practitioner's context.Comment: journal submission, 34 pages, 8 figure

    Adaptive multiscale methods for 3D streamer discharges in air

    Get PDF
    We discuss spatially and temporally adaptive implicit-explicit (IMEX) methods for parallel simulations of three-dimensional fluid streamer discharges in atmospheric air. We examine strategies for advancing the fluid equations and elliptic transport equations (e.g. Poisson) with different time steps, synchronizing them on a global physical time scale which is taken to be proportional to the dielectric relaxation time. The use of a longer time step for the electric field leads to numerical errors that can be diagnosed, and we quantify the conditions where this simplification is valid. Likewise, using a three-term Helmholtz model for radiative transport, the same error diagnostics show that the radiative transport equations do not need to be resolved on time scales finer than the dielectric relaxation time. Elliptic equations are bottlenecks for most streamer simulation codes, and the results presented here potentially provide computational savings. Finally, a computational example of 3D branching streamers in a needle-plane geometry that uses up to 700 million grid cells is presented.Comment: 17 pages, 5 figure
    corecore