53,572 research outputs found

    Robust Resolution-Enhanced Prostate Segmentation in Magnetic Resonance and Ultrasound Images through Convolutional Neural Networks

    Full text link
    [EN] Prostate segmentations are required for an ever-increasing number of medical applications, such as image-based lesion detection, fusion-guided biopsy and focal therapies. However, obtaining accurate segmentations is laborious, requires expertise and, even then, the inter-observer variability remains high. In this paper, a robust, accurate and generalizable model for Magnetic Resonance (MR) and three-dimensional (3D) Ultrasound (US) prostate image segmentation is proposed. It uses a densenet-resnet-based Convolutional Neural Network (CNN) combined with techniques such as deep supervision, checkpoint ensembling and Neural Resolution Enhancement. The MR prostate segmentation model was trained with five challenging and heterogeneous MR prostate datasets (and two US datasets), with segmentations from many different experts with varying segmentation criteria. The model achieves a consistently strong performance in all datasets independently (mean Dice Similarity Coefficient -DSC- above 0.91 for all datasets except for one), outperforming the inter-expert variability significantly in MR (mean DSC of 0.9099 vs. 0.8794). When evaluated on the publicly available Promise12 challenge dataset, it attains a similar performance to the best entries. In summary, the model has the potential of having a significant impact on current prostate procedures, undercutting, and even eliminating, the need of manual segmentations through improvements in terms of robustness, generalizability and output resolutionThis work has been partially supported by a doctoral grant of the Spanish Ministry of Innovation and Science, with reference FPU17/01993Pellicer-Valero, OJ.; González-Pérez, V.; Casanova Ramón-Borja, JL.; Martín García, I.; Barrios Benito, M.; Pelechano Gómez, P.; Rubio-Briones, J.... (2021). Robust Resolution-Enhanced Prostate Segmentation in Magnetic Resonance and Ultrasound Images through Convolutional Neural Networks. Applied Sciences. 11(2):1-17. https://doi.org/10.3390/app11020844S117112Marra, G., Ploussard, G., Futterer, J., & Valerio, M. (2019). Controversies in MR targeted biopsy: alone or combined, cognitive versus software-based fusion, transrectal versus transperineal approach? World Journal of Urology, 37(2), 277-287. doi:10.1007/s00345-018-02622-5Ahdoot, M., Lebastchi, A. H., Turkbey, B., Wood, B., & Pinto, P. A. (2019). Contemporary treatments in prostate cancer focal therapy. Current Opinion in Oncology, 31(3), 200-206. doi:10.1097/cco.0000000000000515Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. doi:10.1145/3065386Allen, P. D., Graham, J., Williamson, D. C., & Hutchinson, C. E. (s. f.). Differential Segmentation of the Prostate in MR Images Using Combined 3D Shape Modelling and Voxel Classification. 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, 2006. doi:10.1109/isbi.2006.1624940Freedman, D., Radke, R. J., Tao Zhang, Yongwon Jeong, Lovelock, D. M., & Chen, G. T. Y. (2005). Model-based segmentation of medical imagery by matching distributions. IEEE Transactions on Medical Imaging, 24(3), 281-292. doi:10.1109/tmi.2004.841228Klein, S., van der Heide, U. A., Lips, I. M., van Vulpen, M., Staring, M., & Pluim, J. P. W. (2008). Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Medical Physics, 35(4), 1407-1417. doi:10.1118/1.2842076Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 234-241. doi:10.1007/978-3-319-24574-4_28He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2017.322Shelhamer, E., Long, J., & Darrell, T. (2017). Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640-651. doi:10.1109/tpami.2016.2572683He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2016.90Milletari, F., Navab, N., & Ahmadi, S.-A. (2016). V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. 2016 Fourth International Conference on 3D Vision (3DV). doi:10.1109/3dv.2016.79Zhu, Q., Du, B., Turkbey, B., Choyke, P. L., & Yan, P. (2017). Deeply-supervised CNN for prostate segmentation. 2017 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/ijcnn.2017.7965852To, M. N. N., Vu, D. Q., Turkbey, B., Choyke, P. L., & Kwak, J. T. (2018). Deep dense multi-path neural network for prostate segmentation in magnetic resonance imaging. International Journal of Computer Assisted Radiology and Surgery, 13(11), 1687-1696. doi:10.1007/s11548-018-1841-4Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.243Zhu, Y., Wei, R., Gao, G., Ding, L., Zhang, X., Wang, X., & Zhang, J. (2018). Fully automatic segmentation on prostate MR images based on cascaded fully convolution network. Journal of Magnetic Resonance Imaging, 49(4), 1149-1156. doi:10.1002/jmri.26337Wang, Y., Ni, D., Dou, H., Hu, X., Zhu, L., Yang, X., … Wang, T. (2019). Deep Attentive Features for Prostate Segmentation in 3D Transrectal Ultrasound. IEEE Transactions on Medical Imaging, 38(12), 2768-2778. doi:10.1109/tmi.2019.2913184Lemaître, G., Martí, R., Freixenet, J., Vilanova, J. C., Walker, P. M., & Meriaudeau, F. (2015). Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review. Computers in Biology and Medicine, 60, 8-31. doi:10.1016/j.compbiomed.2015.02.009Litjens, G., Toth, R., van de Ven, W., Hoeks, C., Kerkstra, S., van Ginneken, B., … Madabhushi, A. (2014). Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge. Medical Image Analysis, 18(2), 359-373. doi:10.1016/j.media.2013.12.002Zhu, Q., Du, B., & Yan, P. (2020). Boundary-Weighted Domain Adaptive Neural Network for Prostate MR Image Segmentation. IEEE Transactions on Medical Imaging, 39(3), 753-763. doi:10.1109/tmi.2019.2935018He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015 IEEE International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2015.123Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359. doi:10.1109/tkde.2009.191Smith, L. N. (2017). Cyclical Learning Rates for Training Neural Networks. 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). doi:10.1109/wacv.2017.58Abraham, N., & Khan, N. M. (2019). A Novel Focal Tversky Loss Function With Improved Attention U-Net for Lesion Segmentation. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). doi:10.1109/isbi.2019.8759329Lei, Y., Tian, S., He, X., Wang, T., Wang, B., Patel, P., … Yang, X. (2019). Ultrasound prostate segmentation based on multidirectional deeply supervised V‐Net. Medical Physics, 46(7), 3194-3206. doi:10.1002/mp.13577Orlando, N., Gillies, D. J., Gyacskov, I., Romagnoli, C., D’Souza, D., & Fenster, A. (2020). Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. Medical Physics, 47(6), 2413-2426. doi:10.1002/mp.14134Karimi, D., Zeng, Q., Mathur, P., Avinash, A., Mahdavi, S., Spadinger, I., … Salcudean, S. E. (2019). Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images. Medical Image Analysis, 57, 186-196. doi:10.1016/j.media.2019.07.005PROMISE12 Resultshttps://promise12.grand-challenge.org/Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., & Maier-Hein, K. H. (2020). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods, 18(2), 203-211. doi:10.1038/s41592-020-01008-

    Direct estimation of kinetic parametric images for dynamic PET.

    Get PDF
    Dynamic positron emission tomography (PET) can monitor spatiotemporal distribution of radiotracer in vivo. The spatiotemporal information can be used to estimate parametric images of radiotracer kinetics that are of physiological and biochemical interests. Direct estimation of parametric images from raw projection data allows accurate noise modeling and has been shown to offer better image quality than conventional indirect methods, which reconstruct a sequence of PET images first and then perform tracer kinetic modeling pixel-by-pixel. Direct reconstruction of parametric images has gained increasing interests with the advances in computing hardware. Many direct reconstruction algorithms have been developed for different kinetic models. In this paper we review the recent progress in the development of direct reconstruction algorithms for parametric image estimation. Algorithms for linear and nonlinear kinetic models are described and their properties are discussed

    Diffeomorphic Metric Mapping of High Angular Resolution Diffusion Imaging based on Riemannian Structure of Orientation Distribution Functions

    Full text link
    In this paper, we propose a novel large deformation diffeomorphic registration algorithm to align high angular resolution diffusion images (HARDI) characterized by orientation distribution functions (ODFs). Our proposed algorithm seeks an optimal diffeomorphism of large deformation between two ODF fields in a spatial volume domain and at the same time, locally reorients an ODF in a manner such that it remains consistent with the surrounding anatomical structure. To this end, we first review the Riemannian manifold of ODFs. We then define the reorientation of an ODF when an affine transformation is applied and subsequently, define the diffeomorphic group action to be applied on the ODF based on this reorientation. We incorporate the Riemannian metric of ODFs for quantifying the similarity of two HARDI images into a variational problem defined under the large deformation diffeomorphic metric mapping (LDDMM) framework. We finally derive the gradient of the cost function in both Riemannian spaces of diffeomorphisms and the ODFs, and present its numerical implementation. Both synthetic and real brain HARDI data are used to illustrate the performance of our registration algorithm
    corecore