146,417 research outputs found

    On-body antenna wit parasitic elements

    Get PDF
    An antenna with multi-elements that act together to form an array is required to increase the gain. One example is the well-known Yagi-Uda antenna. Such an antenna is widely used for television communication in which it operates at high frequency (HF), very high frequency (VHF) and ultra high frequency (UHF). It consists of a driven element and a number of parasitic radiators in which currents are induced by mutual coupling. Some applications consider the mutual coupling effect undesirable because it degrades the performance. However, in the parasiticaray it is central to the operation. The parasite elements are useful to increase the gain, create a directional beam and enhance the bandwidth impedance of the antenna

    Performance of Orthogonal Beamforming for SDMA with Limited Feedback

    Full text link
    On the multi-antenna broadcast channel, the spatial degrees of freedom support simultaneous transmission to multiple users. The optimal multiuser transmission, known as dirty paper coding, is not directly realizable. Moreover, close-to-optimal solutions such as Tomlinson-Harashima precoding are sensitive to CSI inaccuracy. This paper considers a more practical design called per user unitary and rate control (PU2RC), which has been proposed for emerging cellular standards. PU2RC supports multiuser simultaneous transmission, enables limited feedback, and is capable of exploiting multiuser diversity. Its key feature is an orthogonal beamforming (or precoding) constraint, where each user selects a beamformer (or precoder) from a codebook of multiple orthonormal bases. In this paper, the asymptotic throughput scaling laws for PU2RC with a large user pool are derived for different regimes of the signal-to-noise ratio (SNR). In the multiuser-interference-limited regime, the throughput of PU2RC is shown to scale logarithmically with the number of users. In the normal SNR and noise-limited regimes, the throughput is found to scale double logarithmically with the number of users and also linearly with the number of antennas at the base station. In addition, numerical results show that PU2RC achieves higher throughput and is more robust against CSI quantization errors than the popular alternative of zero-forcing beamforming if the number of users is sufficiently large.Comment: 27 pages; to appear in IEEE Transactions on Vehicular Technolog

    Adaptive link-weight routing protocol using cross-layer communication for MANET

    Get PDF
    Routing efficiency is one of the challenges offered by Mobile Ad-hoc Networks (MANETs). This paper proposes a novel routing technique called Adaptive Link-Weight (ALW) routing protocol. ALW adaptively selects an optimum route on the basis of available bandwidth, low delay and long route lifetime. The technique adapts a cross-layer framework where the ALW is integrated with application and physical layer. The proposed design allows applications to convey preferences to the ALW protocol to override the default path selection mechanism. The results confirm improvement over AODV in terms of network load, route discovery time and link reliability
    corecore