5 research outputs found

    An Adaptable and Unsupervised TinyML Anomaly Detection System for Extreme Industrial Environments

    Get PDF
    Industrial assets often feature multiple sensing devices to keep track of their status by monitoring certain physical parameters. These readings can be analyzed with machine learning (ML) tools to identify potential failures through anomaly detection, allowing operators to take appropriate corrective actions. Typically, these analyses are conducted on servers located in data centers or the cloud. However, this approach increases system complexity and is susceptible to failure in cases where connectivity is unavailable. Furthermore, this communication restriction limits the approach’s applicability in extreme industrial environments where operating conditions affect communication and access to the system. This paper proposes and evaluates an end-to-end adaptable and configurable anomaly detection system that uses the Internet of Things (IoT), edge computing, and Tiny-MLOps methodologies in an extreme industrial environment such as submersible pumps. The system runs on an IoT sensing Kit, based on an ESP32 microcontroller and MicroPython firmware, located near the data source. The processing pipeline on the sensing device collects data, trains an anomaly detection model, and alerts an external gateway in the event of an anomaly. The anomaly detection model uses the isolation forest algorithm, which can be trained on the microcontroller in just 1.2 to 6.4 s and detect an anomaly in less than 16 milliseconds with an ensemble of 50 trees and 80 KB of RAM. Additionally, the system employs blockchain technology to provide a transparent and irrefutable repository of anomalies

    Deep Learning of Explainable EEG Patterns as Dynamic Spatiotemporal Clusters and Rules in a Brain-Inspired Spiking Neural Network

    Get PDF
    The paper proposes a new method for deep learning and knowledge discovery in a brain-inspired Spiking Neural Networks (SNN) architecture that enhances the model's explainability while learning from streaming spatiotemporal brain data (STBD) in an incremental and on-line mode of operation. This led to the extraction of spatiotemporal rules from SNN models that explain why a certain decision (output prediction) was made by the model. During the learning process, the SNN created dynamic neural clusters, captured as polygons, which evolved in time and continuously changed their size and shape. The dynamic patterns of the clusters were quantitatively analyzed to identify the important STBD features that correspond to the most activated brain regions. We studied the trend of dynamically created clusters and their spike-driven events that occur together in specific space and time. The research contributes to: (1) enhanced interpretability of SNN learning behavior through dynamic neural clustering; (2) feature selection and enhanced accuracy of classification; (3) spatiotemporal rules to support model explainability; and (4) a better understanding of the dynamics in STBD in terms of feature interaction. The clustering method was applied to a case study of Electroencephalogram (EEG) data, recorded from a healthy control group (n = 21) and opiate use (n = 18) subjects while they were performing a cognitive task. The SNN models of EEG demonstrated different trends of dynamic clusters across the groups. This suggested to select a group of marker EEG features and resulted in an improved accuracy of EEG classification to 92%, when compared with all-feature classification. During learning of EEG data, the areas of neurons in the SNN model that form adjacent clusters (corresponding to neighboring EEG channels) were detected as fuzzy boundaries that explain overlapping activity of brain regions for each group of subjects

    Cyber Security and Critical Infrastructures

    Get PDF
    This book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles: an editorial explaining current challenges, innovative solutions, real-world experiences including critical infrastructure, 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems, and a review of cloud, edge computing, and fog's security and privacy issues

    Participatory analytics for transport decision-making

    Full text link
    This thesis investigates the design and evaluation of several software platforms that facilitate participatory outcomes in transport decision-making across operational, local and strategic scales. These platforms act as instruments to explore aspects of the research question: "How can urban dashboards be contextualised, designed & evaluated in a way that is sensitive to the changing role of digital democracy, immersive technologies and the increasingly collaborative nature of planning?". The concept of participatory urban dashboards is introduced, followed by process of participatory analytics. This process involves bringing more people on board with both using the dashboard (e.g., together or collaboratively) and allowing a more general audience of citizens or stakeholders to make sense and validate what is displayed. The research is applied to the city of Sydney, Australia. Sydney is a growing, global city with a wide variety of transport infrastructure ambitions and a strong, open-data ecosystem. Sydney’s transport system underpins the case studies of the operational, local and strategic digital artefacts assessed in this research. Participatory analytics outcomes as a result of interacting with these digital prototypes are evaluated. This will, in turn, help direct research and real-life applications and development of these tools. Further, it aims to build on research gap calling for further understanding of context-specific, user-centric design and evaluation of these participatory analytics tools

    Game Theory

    Get PDF
    The Special Issue “Game Theory” of the journal Mathematics provides a collection of papers that represent modern trends in mathematical game theory and its applications. The works address the problem of constructing and implementation of solution concepts based on classical optimality principles in different classes of games. In the case of non-cooperative behavior of players, the Nash equilibrium as a basic optimality principle is considered in both static and dynamic game settings. In the case of cooperative behavior of players, the situation is more complicated. As is seen from presented papers, the direct use of cooperative optimality principles in dynamic and differential games may bring time or subgame inconsistency of a solution which makes the cooperative schemes unsustainable. The notion of time or subgame consistency is crucial to the success of cooperation in a dynamic framework. In the works devoted to dynamic or differential games, this problem is analyzed and the special regularization procedures proposed to achieve time or subgame consistency of cooperative solutions. Among others, special attention in the presented book is paid to the construction of characteristic functions which determine the power of coalitions in games. The book contains many multi-disciplinary works applied to economic and environmental applications in a coherent manner
    corecore