34 research outputs found

    Enhanced device-based 3D object manipulation technique for handheld mobile augmented reality

    Get PDF
    3D object manipulation is one of the most important tasks for handheld mobile Augmented Reality (AR) towards its practical potential, especially for realworld assembly support. In this context, techniques used to manipulate 3D object is an important research area. Therefore, this study developed an improved device based interaction technique within handheld mobile AR interfaces to solve the large range 3D object rotation problem as well as issues related to 3D object position and orientation deviations in manipulating 3D object. The research firstly enhanced the existing device-based 3D object rotation technique with an innovative control structure that utilizes the handheld mobile device tilting and skewing amplitudes to determine the rotation axes and directions of the 3D object. Whenever the device is tilted or skewed exceeding the threshold values of the amplitudes, the 3D object rotation will start continuously with a pre-defined angular speed per second to prevent over-rotation of the handheld mobile device. This over-rotation is a common occurrence when using the existing technique to perform large-range 3D object rotations. The problem of over-rotation of the handheld mobile device needs to be solved since it causes a 3D object registration error and a 3D object display issue where the 3D object does not appear consistent within the user’s range of view. Secondly, restructuring the existing device-based 3D object manipulation technique was done by separating the degrees of freedom (DOF) of the 3D object translation and rotation to prevent the 3D object position and orientation deviations caused by the DOF integration that utilizes the same control structure for both tasks. Next, an improved device-based interaction technique, with better performance on task completion time for 3D object rotation unilaterally and 3D object manipulation comprehensively within handheld mobile AR interfaces was developed. A pilot test was carried out before other main tests to determine several pre-defined values designed in the control structure of the proposed 3D object rotation technique. A series of 3D object rotation and manipulation tasks was designed and developed as separate experimental tasks to benchmark both the proposed 3D object rotation and manipulation techniques with existing ones on task completion time (s). Two different groups of participants aged 19-24 years old were selected for both experiments, with each group consisting sixteen participants. Each participant had to complete twelve trials, which came to a total 192 trials per experiment for all the participants. Repeated measure analysis was used to analyze the data. The results obtained have statistically proven that the developed 3D object rotation technique markedly outpaced existing technique with significant shorter task completion times of 2.04s shorter on easy tasks and 3.09s shorter on hard tasks after comparing the mean times upon all successful trials. On the other hand, for the failed trials, the 3D object rotation technique was 4.99% more accurate on easy tasks and 1.78% more accurate on hard tasks in comparison to the existing technique. Similar results were also extended to 3D object manipulation tasks with an overall 9.529s significant shorter task completion time of the proposed manipulation technique as compared to the existing technique. Based on the findings, an improved device-based interaction technique has been successfully developed to address the insufficient functionalities of the current technique

    Use of haptics to promote learning outcomes in serious games

    Get PDF
    Integration of haptics in Serious Games (SGs) remains limited compared to vision and audio. Many works seem to limit haptic interactions to the mimicking of real life feelings. Here, we address this by investigating the use of haptics to promote learning outcomes in serious games. By analyzing how we learn, we proposed a model that identifies three learning outcomes: (1) engage the user with the content of the game, (2) develop technical skills, and (3) develop cognitive skills. For each learning skill, we show how haptic interactions may be exploited. We also show that the proposed model may be used to describe and to evaluate existing methods. It may also help in the designing of new methods that take advantage of haptics to promote learning outcomes

    A usability study on widget design for selecting boolean operations

    Get PDF
    Applying the correct set of Boolean operations is a fundamental task in constructive solid geometry (CSG), which is a staple in automated manufacturing systems. Although textual buttons and icons are the most common interfaces to apply such operations, these require an unnecessary cognitive load that hampers the solid modeling process. This study presents VennPad, a novel CSG widget that gathers all Boolean operations under the same user interface control element and is represented as a two-set Venn diagram. Contrary to conventional CSG widgets, VennPad supports a graphical interface that gives simultaneous access to several types of Boolean operations (intersection, union, difference, symmetric difference and split). A usability study was conducted to ascertain whether VennPad is a more natural interface compared to textual buttons and icon-based widgets for different solid modeling tasks. VennPad proved to be an effective interface to perform Boolean operations. Qualitative feedback places VennPad as the preferred interface, but efficiency results are operation dependent, thus, opening the way to new design iterations.info:eu-repo/semantics/publishedVersio

    VALID: a perceptually validated Virtual Avatar Library for Inclusion and Diversity

    Get PDF
    As consumer adoption of immersive technologies grows, virtual avatars will play a prominent role in the future of social computing. However, as people begin to interact more frequently through virtual avatars, it is important to ensure that the research community has validated tools to evaluate the effects and consequences of such technologies. We present the first iteration of a new, freely available 3D avatar library called the Virtual Avatar Library for Inclusion and Diversity (VALID), which includes 210 fully rigged avatars with a focus on advancing racial diversity and inclusion. We also provide a detailed process for creating, iterating, and validating avatars of diversity. Through a large online study (n = 132) with participants from 33 countries, we provide statistically validated labels for each avatar’s perceived race and gender. Through our validation study, we also advance knowledge pertaining to the perception of an avatar’s race. In particular, we found that avatars of some races were more accurately identified by participants of the same race

    Review of three-dimensional human-computer interaction with focus on the leap motion controller

    Get PDF
    Modern hardware and software development has led to an evolution of user interfaces from command-line to natural user interfaces for virtual immersive environments. Gestures imitating real-world interaction tasks increasingly replace classical two-dimensional interfaces based on Windows/Icons/Menus/Pointers (WIMP) or touch metaphors. Thus, the purpose of this paper is to survey the state-of-the-art Human-Computer Interaction (HCI) techniques with a focus on the special field of three-dimensional interaction. This includes an overview of currently available interaction devices, their applications of usage and underlying methods for gesture design and recognition. Focus is on interfaces based on the Leap Motion Controller (LMC) and corresponding methods of gesture design and recognition. Further, a review of evaluation methods for the proposed natural user interfaces is given

    ‎An Artificial Intelligence Framework for Supporting Coarse-Grained Workload Classification in Complex Virtual Environments

    Get PDF
    Cloud-based machine learning tools for enhanced Big Data applications}‎, ‎where the main idea is that of predicting the ``\emph{next}'' \emph{workload} occurring against the target Cloud infrastructure via an innovative \emph{ensemble-based approach} that combines the effectiveness of different well-known \emph{classifiers} in order to enhance the whole accuracy of the final classification‎, ‎which is very relevant at now in the specific context of \emph{Big Data}‎. ‎The so-called \emph{workload categorization problem} plays a critical role in improving the efficiency and reliability of Cloud-based big data applications‎. ‎Implementation-wise‎, ‎our method proposes deploying Cloud entities that participate in the distributed classification approach on top of \emph{virtual machines}‎, ‎which represent classical ``commodity'' settings for Cloud-based big data applications‎. ‎Given a number of known reference workloads‎, ‎and an unknown workload‎, ‎in this paper we deal with the problem of finding the reference workload which is most similar to the unknown one‎. ‎The depicted scenario turns out to be useful in a plethora of modern information system applications‎. ‎We name this problem as \emph{coarse-grained workload classification}‎, ‎because‎, ‎instead of characterizing the unknown workload in terms of finer behaviors‎, ‎such as CPU‎, ‎memory‎, ‎disk‎, ‎or network intensive patterns‎, ‎we classify the whole unknown workload as one of the (possible) reference workloads‎. ‎Reference workloads represent a category of workloads that are relevant in a given applicative environment‎. ‎In particular‎, ‎we focus our attention on the classification problem described above in the special case represented by \emph{virtualized environments}‎. ‎Today‎, ‎\emph{Virtual Machines} (VMs) have become very popular because they offer important advantages to modern computing environments such as cloud computing or server farms‎. ‎In virtualization frameworks‎, ‎workload classification is very useful for accounting‎, ‎security reasons‎, ‎or user profiling‎. ‎Hence‎, ‎our research makes more sense in such environments‎, ‎and it turns out to be very useful in a special context like Cloud Computing‎, ‎which is emerging now‎. ‎In this respect‎, ‎our approach consists of running several machine learning-based classifiers of different workload models‎, ‎and then deriving the best classifier produced by the \emph{Dempster-Shafer Fusion}‎, ‎in order to magnify the accuracy of the final classification‎. ‎Experimental assessment and analysis clearly confirm the benefits derived from our classification framework‎. ‎The running programs which produce unknown workloads to be classified are treated in a similar way‎. ‎A fundamental aspect of this paper concerns the successful use of data fusion in workload classification‎. ‎Different types of metrics are in fact fused together using the Dempster-Shafer theory of evidence combination‎, ‎giving a classification accuracy of slightly less than 80%80\%‎. ‎The acquisition of data from the running process‎, ‎the pre-processing algorithms‎, ‎and the workload classification are described in detail‎. ‎Various classical algorithms have been used for classification to classify the workloads‎, ‎and the results are compared‎

    A Cloud Based Disaster Management System

    Get PDF
    The combination of wireless sensor networks (WSNs) and 3D virtual environments opens a new paradigm for their use in natural disaster management applications. It is important to have a realistic virtual environment based on datasets received from WSNs to prepare a backup rescue scenario with an acceptable response time. This paper describes a complete cloud-based system that collects data from wireless sensor nodes deployed in real environments and then builds a 3D environment in near real-time to reflect the incident detected by sensors (fire, gas leaking, etc.). The system’s purpose is to be used as a training environment for a rescue team to develop various rescue plans before they are applied in real emergency situations. The proposed cloud architecture combines 3D data streaming and sensor data collection to build an efficient network infrastructure that meets the strict network latency requirements for 3D mobile disaster applications. As compared to other existing systems, the proposed system is truly complete. First, it collects data from sensor nodes and then transfers it using an enhanced Routing Protocol for Low-Power and Lossy Networks (RLP). A 3D modular visualizer with a dynamic game engine was also developed in the cloud for near-real time 3D rendering. This is an advantage for highly-complex rendering algorithms and less powerful devices. An Extensible Markup Language (XML) atomic action concept was used to inject 3D scene modifications into the game engine without stopping or restarting the engine. Finally, a multi-objective multiple traveling salesman problem (AHP-MTSP) algorithm is proposed to generate an efficient rescue plan by assigning robots and multiple unmanned aerial vehicles to disaster target locations, while minimizing a set of predefined objectives that depend on the situation. The results demonstrate that immediate feedback obtained from the reconstructed 3D environment can help to investigate what–if scenarios, allowing for the preparation of effective rescue plans with an appropriate management effort.info:eu-repo/semantics/publishedVersio
    corecore