298,196 research outputs found

    A flexible service selection for executing virtual services

    Full text link
    [EN] With the adoption of a service-oriented paradigm on the Web, many software services are likely to fulfil similar functional needs for end-users. We propose to aggregate functionally equivalent software services within one single virtual service, that is, to associate a functionality, a graphical user interface (GUI), and a set of selection rules. When an end user invokes such a virtual service through its GUI to answer his/her functional need, the software service that best responds to the end-user s selection policy is selected and executed and the result is then rendered to the end-user through the GUI of the virtual service. A key innovation in this paper is the flexibility of our proposed service selection policy. First, each selection policy can refer to heterogeneous parameters (e.g., service price, end-user location, and QoS). Second, additional parameters can be added to an existing or new policy with little investment. Third, the end users themselves define a selection policy to apply during the selection process, thanks to the GUI element added as part of the virtual service design. This approach was validated though the design, implementation, and testing of an end-to-end architecture, including the implementation of several virtual services and utilizing several software services available today on the Web.This work was partially supported in part by SERVERY (Service Platform for Innovative Communication Environment), a CELTIC project that aims to create a Service Marketplace that bridges the Internet and Telco worlds by merging the flexibility and openness of the former with the trustworthiness and reliability of the latter, enabling effective and profitable cooperation among actors.Laga, N.; Bertin, E.; Crespi, N.; Bedini, I.; Molina Moreno, B.; Zhao, Z. (2013). A flexible service selection for executing virtual services. World Wide Web. 16(3):219-245. doi:10.1007/s11280-012-0184-2S219245163Aggarwal, R., Verma, K., Miller, J., and Milnor, W.: Constraint Driven Web Service Composition in METEOR-S. In Proceedings of the 2004 IEEE international Conference on Services Computing (September 2004). IEEE Computer Society, Washington, DC, 23–30.Apple Inc. Apple app store.: Available at: www.apple.com/iphone/appstore/ , accessed on May 22nd, 2012.Atzeni, P., Catarci, T., Pernici, B.: Multi-Channel adaptive information Systems. World Wide Web 10(4), 345–347 (2007)Baresi, L., Bianchini, D., Antonellis, V.D., Fugini, M.G., Pernici, B., Plebani, P.: Context-aware Composition of e-Service. In Technologies for E-Services: Third International Workshop, vol. 2819, 28–41, TES 2003, Berlin, German, 2003.Ben Hassine, A., Matsubara, S., Ishida, T.: In Proceedings of the 5th international conference on The Semantic Web (ISWC’06), Isabel Cruz, Stefan Decker, Dean Allemang, Chris Preist, and Daniel Schwabe (Eds.). Springer-Verlag, Berlin, Heidelberg, 130–143 (2006).Blum, N., Dutkowski, S., Magedanz, T.: InSeRt - An Intent-based Service Request API for Service Exposure in Next Generation Networks. In Proceedings of 32nd Annual IEEE Software Engineering Workshop. Porto Sani Resort, Kassandra, Greece, 2008 pp21–30.Boussard, M., Fodor, S., Crespi, N., Iribarren, V., Le Rouzic, J.P., Bedini, I., Marton, G., Moro Fernandez, D., Lorenzo Duenas, O., Molina, B.: SERVERY: the Web-Telco marketplace. ICT-Mobile Summit 2009, Santander (2009)Cabrera, Ó., Oriol, M., Franch, X., Marco, J., LĂłpez, L., Fragoso, O., Santaolaya, R.: WeSSQoS: A Configurable SOA System for Quality-aware Web Service Selection. CoRR 2011, abs/1110.5574.Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.: Adaptive and Dynamic Service Composition in eFlow. Lecture Notes in Computer Science, Volume 1789/2000, 13–31, 2000.CibrĂĄn, M. A., Verheecke, B., Vanderperren, W., SuvĂ©e, D., and Jonckers, V.: “Aspect-oriented Programming for Dynamic Web Service Selection, Integration and Management.” In Proc. World Wide Web 2007, pp. 211–242.Crespi, N., Boussard, M. Fodor, S.: Converging Web 2.0 with telecommunications. eStrategies Projects, Vol. 10, 108–109. British Publishers, ISSN 1758–2369, June 2009.Dey, A.K., Salber, D., Abowd, G.D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum. Comput. Interact. 16, 1–67 (2001)Ding, Q., Li, X., and Zhou, X.: Reputation Based Service Selection in Grid Environment. In Proceedings of the 2008 international Conference on Computer Science and Software Engineering - Volume 03 (December. 2008). CSSE. IEEE Computer Society, Washington, DC, 58–61.Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures. Thesis dissertation, 2000.Franch, X., GrĂŒnbacher, P., Oriol, M., Burgstaller, B., Dhungana, D., LĂłpez, L., Marco, J., Pimentel, J.: Goal-driven Adaptation of Service-Based Systems from Runtime Monitoring Data. REFS 2011.Frolund, S., Koisten, J.: QML: A Language for Quality of Service Specification. HP Labs technical reports. Available at http://www.hpl.hp.com/techreports/98/HPL-98-10.html , accessed on May 22nd, 2012.Google. Android market.: Available at: www.android.com/market/ , accessed on May 22nd, 2012.Google. Intents and Intent Filters.: Available at http://developer.android.com/guide/topics/intents/intents-filters.html , accessed on May 22nd, 2012.Gu, X., Nahrstedt, K., Yuan, W., Wichadakul, D., Xu, D.: An Xml-Based Quality of Service Enabling Language for the Web. Technical Report. UMI Order Number: UIUCDCS-R-2001-2212., University of Illinois at Urbana-Champaign.Laga, N., Bertin, E., and Crespi, N.: Building a User Friendly Service Dashboard: Automatic and Non-intrusive Chaining between Widgets. In Proceedings of the 2009 Congress on Services - I (July 06–10, 2009). SERVICES. IEEE Computer Society, Washington, DC, 484–491.Laga, N., Bertin, E., and Crespi, N.: Business Process Personalization Through Web Widgets. In Proceedings of the 2010 IEEE international Conference on Web Services (July 05–10, 2010). ICWS. IEEE Computer Society, Washington, DC, 551–558.Liu, Y., Ngu, A. H., and Zeng, L. Z.: QoS computation and policing in dynamic web service selection. In Proceedings of the 13th international World Wide Web Conference on Alternate Track Papers &Amp; Posters (New York, NY, USA, May 19–21, 2004). WWW Alt. ’04. ACM, New York, NY, 66–73.Malik, Z., Bouguettaya, A.: Rater credibility assessment in Web services interactions. World Wide Web 12(1), 3–25 (2009)Martin, D. et al.: OWL-S: Semantic Markup for Web Services. W3C member submission, available at http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/ , accessed on May 22nd, 2012.Nestler, T., Namoun, A., Schill, A.: End-user development of service-based interactive web applications at the presentation layer. EICS 2011: 197–206.Newcomer, E.: Understanding Web Services: XML, Wsdl, Soap, and UDDI. Addison, Wesley, Boston, Mass., May 2002.O’Reilly, T.: What Is Web 2.0, Design Patterns and Business Models for the Next Generation of Software.Piessens, F., Jacobs, B., Truyen, E., Joosen, W.: Support for Metadata-driven Selection of Run-time Services in .NET is Promising but Immature. vol. 3, no. 2, Special issue: .NET: The Programmer’s Perspective: ECOOP Workshop, 27–35. 2003.Rasch, K;, Li, F., Sehic, S., Ayani R., and Dustdar, S.: “Context-driven personalized service discovery in pervasive environments,” in Proc World Wide Web, 2011, pp. 295–319.Reichl, P.: From ‘Quality-of-Service’ and ‘Quality-of-Design’ to ‘Quality-of-Experience’: A holistic view on future interactive telecommunication ser-vices. In 15th International Conference on Software, Telecommunications and Computer Networks, 2007. Soft-COM 2007. Sept. 2007. vol., no.,1–6, 27–29.Rolland, C., Kaabi, R.S., Kraiem, N.: On ISOA: Intentional Services Oriented Architecture. In Advanced Information Systems Engineering, volume 4495/2007, 158–172, June 2007.Sanchez, A., Carro, B., Wesner, S.: Telco services for end customers: European Perspective. In Communications Magazine. IEEE 46(2), 14–18 (2008)Santhanam, G. R., Basu, S., and Honavar, V.: On Utilizing Qualitative Preferences in Web Service Composition: A CP-net Based Approach. In Proceedings of IEEE Congress on Services, Services - Part I, vol., no.,538–544, 2008.Spanoudakis, G., Mahbub, K., Zisman, A.: A Platform for Context Aware Runtime Web Service Discovery. In Proc IEEE ICWS, 2007, pp233-240.Tsesmetzis, D., Roussaki, I., Sykas, E.: Modeling and Simulation of QoS-aware Web Service Selection for Provider Profit Maximization. Simulation 83(1), 93–106 (2007)Wang, P., Chao, K., Lo, C., Farmer, R., and Kuo, P.: A Reputation-Based Service Selection Scheme. In Proceedings of the 2009 IEEE international Conference on E-Business Engineering (October 21–23, 2009). ICEBE. IEEE Computer Society, Washington, DC, 501–506.Wang, H., Yang, D., Zhao, Y., and Gao, Y.: Multiagent System for Reputation--based Web Services Selection. In Proceedings of the Sixth international Conference on Quality Software (October 27–28, 2006). QSIC. IEEE Computer Society, Washington, DC, 429–434.Wholesale Applications Community.: WAC Informational Whitepaper. Available at http://www.wholesaleappcommunity.com/About-Wac/BACKGROUND%20TO%20WAC/whitepaper.pdf , accessed on May 22nd, 2012.Windows Marketplace.: Available at http://marketplace.windowsphone.com/default.aspx , accessed on May 22nd, 2012.Xu, Z., Martin, P., Powley, W., Zulkernine, F.: Reputation-Enhanced QoS-based Web Services Discovery. Web Services, 2007. In proceedings of IEEE International Conference on Web Services, ICWS 2007. 249, 256, 9–13 July 2007.Yu, Q., Bouguettaya,A.: “Multi-attribute optimization in service selection”. In Proc World Wide Web,2012, pp. 1–31.Yu, T., Zhang, Y., Lin, K. Efficient algorithms for Web services selection with end-to-end QoS constraints. ACM Transaction Web 1, 1. Article 6, 26 pages. (May 2007),

    Exploring Maintainability Assurance Research for Service- and Microservice-Based Systems: Directions and Differences

    Get PDF
    To ensure sustainable software maintenance and evolution, a diverse set of activities and concepts like metrics, change impact analysis, or antipattern detection can be used. Special maintainability assurance techniques have been proposed for service- and microservice-based systems, but it is difficult to get a comprehensive overview of this publication landscape. We therefore conducted a systematic literature review (SLR) to collect and categorize maintainability assurance approaches for service-oriented architecture (SOA) and microservices. Our search strategy led to the selection of 223 primary studies from 2007 to 2018 which we categorized with a threefold taxonomy: a) architectural (SOA, microservices, both), b) methodical (method or contribution of the study), and c) thematic (maintainability assurance subfield). We discuss the distribution among these categories and present different research directions as well as exemplary studies per thematic category. The primary finding of our SLR is that, while very few approaches have been suggested for microservices so far (24 of 223, ?11%), we identified several thematic categories where existing SOA techniques could be adapted for the maintainability assurance of microservices

    Physics-related epistemic uncertainties in proton depth dose simulation

    Full text link
    A set of physics models and parameters pertaining to the simulation of proton energy deposition in matter are evaluated in the energy range up to approximately 65 MeV, based on their implementations in the Geant4 toolkit. The analysis assesses several features of the models and the impact of their associated epistemic uncertainties, i.e. uncertainties due to lack of knowledge, on the simulation results. Possible systematic effects deriving from uncertainties of this kind are highlighted; their relevance in relation to the application environment and different experimental requirements are discussed, with emphasis on the simulation of radiotherapy set-ups. By documenting quantitatively the features of a wide set of simulation models and the related intrinsic uncertainties affecting the simulation results, this analysis provides guidance regarding the use of the concerned simulation tools in experimental applications; it also provides indications for further experimental measurements addressing the sources of such uncertainties.Comment: To be published in IEEE Trans. Nucl. Sc

    Evolution and Modern Approaches for Thermal Analysis of Electrical Machines

    Get PDF
    In this paper, the authors present an extended survey on the evolution and the modern approaches in the thermal analysis of electrical machines. The improvements and the new techniques proposed in the last decade are analyzed in depth and compared in order to highlight the qualities and defects of each. In particular, thermal analysis based on lumped-parameter thermal network, finite-element analysis, and computational fluid dynamics are considered in this paper. In addition, an overview of the problems linked to the thermal parameter determination and computation is proposed and discussed. Taking into account the aims of this paper, a detailed list of books and papers is reported in the references to help researchers interested in these topics

    Modernizing PHCpack through phcpy

    Full text link
    PHCpack is a large software package for solving systems of polynomial equations. The executable phc is menu driven and file oriented. This paper describes the development of phcpy, a Python interface to PHCpack. Instead of navigating through menus, users of phcpy solve systems in the Python shell or via scripts. Persistent objects replace intermediate files.Comment: Part of the Proceedings of the 6th European Conference on Python in Science (EuroSciPy 2013), Pierre de Buyl and Nelle Varoquaux editors, (2014

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling
    • 

    corecore